XCIOMA

eXtendable
Component based
Interoperable
Open
Model driven

Remedy IT rchitecure

Your challenge - our solution

AXCIOMA

An eXtendable Component-based Interoperable Open Model-driven
Architecture

The Component Framework for
Distributed, Real-Time, and Embedded Systems

,/'ﬂ']

= e 100101001,00101 =

/,y/////,/;f;f;/;

> AXCIOMA: the component
ﬁ framework for distributed, real-time,

Remedy IT and embedded systems

Your challenge - our solution

= AXCIOMA is the component technology enabling the
Industrial Internet of Things (lloT)

= The concrete communication middleware between
components is a deployment decision and does not
Impact business logic

= AXCIOMA integrates multiple communication
transports out of the box and more transports can be
easily added

= AXCIOMA delivers portability and interoperability for
lloT applications through a standardized component
model

= For morginfgm@tjon take a look at our website
https://www.axcioma.org/

JU1,00101

LAY \
'i’/ PO
4 g\

& Copyright © Remedy IT

https://www.axcioma.org/

What is AXCIOMA?

Remedy IT

Your challenge - our solution

-~ AXCIOMA is a comprehensive software suite
combining several Object Management Group
(OMG) open standards

* LwCCM, DDS, DDS4CCM, AMI4CCM, CORBA,
IDL, IDL2C++11, and D&C

= AXCIOMA is based on

* Interoperable Open Architecture (IOA)
- Component Based Architecture (CBA)
-« Service Oriented Architecture (SOA)

- Event Driven Architecture (EDA)

» Model Driven Architecture (MDA)

Y SIS,

‘s‘/;; Hggsg'lrly/‘ﬁiﬁ?yf/lii
= 100101001,00201 Copyright © Remedy IT

https://www.axcioma.org/

>

§0 AXCIOMA

Remedy IT

Your challenge - our solution

= AXCIOMA supports the design, development, and

deployment of a distributed component based
architecture

= A component based architecture encapsulates and
integrates the following mechanisms in a “container”

« Threading model
- Lifecycle management
+ Connection management

% JZZL 6/ Lﬂfu‘n
e W il 2 /L 77

==X 100101001,00101

Copyright © Remedy IT

> .
ﬁ What is a Component?

Remedy IT

Your challenge - our solution

/\

» Independent revisable unit of software with well
defined interfaces called “ports”

= Able to be packaged as an independently deployable
set of files

- Smallest decomposable unit that defines standard
ports is called a “monolithic component”

- A “component assembly” is an aggregation of
monolithic components or other component

HMEZ PortRole Key P Q0 ——
8] —() service Port J ® 6 J? Cg [£ Assembly
OR _@ Client Port O Monolithic{]ﬁ E O {I (Z
UML 1.0 (T sibsciier Port Component =0 OO Monolithic '@ Componen &
i Component 'OD' Assembly .@_.@
4 % —{") Publisher Port
| Abasic conceptual ... plus standard ... combine to define a CCM+DDS A Component Assembly defines a hierarchy of
UML Component. . component Port types... application Monolithic Component monolithic components and other assemblies

Yk AUVLULUULUULUL ; Copyright © Remedy IT

Why Component Based
Development? (1)

Remedy IT

Your challenge - our solution

~ Modularity

- Components can be independently updated or
replaced without impacting the rest of a system
- Reuse
- Software Is reusable at the component level instead of
at the system level
~ Interoperability
- Well-defined ports and standards based development

ensures interoperability between application
components

Y SIS,

‘s‘/;; Hggsg'lrly/‘ﬁiﬁ?yf/lii
e 100101001,00201 Copyright © Remedy IT

Why Component Based
Development? (2)

Remedy IT

Your challenge - our solution

- Extensibility

- A Component Based Architecture (CBA) is inherently
loosely-coupled, supporting easier extension of
component and system functionality

- Scalability

- Scalable from single component deployment to large
distributed multi node deployments
- Reduced Complexity
- Encapsulation, modularity, separation of concerns, and

the establishment of hierarchical component
dependencies contribute to reduced design & system

| complexity
W A 4

100101001,00201 18 K) 4 Copyright © Remedy IT

Why Component Based
Development? (3)

Remedy IT

Your challenge - our solution

- Faster and Cheaper Development

- Shorter design times, more reuse and less complexity
- Faster time-to-market, faster software development

« Focus changed to composition of a software-intensive
system vs. all new design

* Lower maintenance costs
» Quality & Reliability

* Reuse and test/maintenance at the component level
vs. at a monolithic system level

‘ g \ \ 3
L/
} VAN

diiy

/I//[Yo v

9 0 & _ ey y 4
E; e :.,'1_ iné‘ = 5:" & :;v”_""”’f J iﬁi ll
»;/;\\-w 100101001,00201

Copyright © Remedy IT

Standards based API

Remedy IT

ivﬁ Advantages of using Open

Your challenge - our solution

- Open APIs are less prone to technology
obsolescence

= No vendor lock-in
- Typically well vetted and designed
= Reuse of existing off-the-shelf technology

* Implementations
* Tools

* Documentation
+ Training

/l///lq. VA
2 et

,,j: =90 100101001,00201

Copyright © Remedy IT

Remedy IT

AXCIOMA Design &
Deployment

Your challenge - our solution

b

. .am

AXCIOMA clearly separates design, implementation,
and deployment phases

Components are designed to be location
Independent and communication middleware
agnostic

Components are implemented and tested in a highly
decoupled fashion

Deployment planning happens separately based on
the complete system requirements

The AXCIOMA framework handles the lifecycle for all
components at runtime

. BN I e,

o sy ¥ 4 .; &
100101001,00101 : Copyright © Remedy IT

>

<
T

Remedy IT

MDE Tooling

Your challenge - our solution

-~ MDE tools that support AXCIOMA

-« Zeligsoft CX for CBDDS
* PTC Integrity Modeler IDL Profile
 CoSMIC
- Remedy IT Eclipse plugins
- MDE tools provide support for

- Data modeling
« Component modeling
+ Deployment modeling
* Auto generation of IDL artifacts
Auto generatlon of D&C deployment plans
/l///lr,, YoV Lﬂ.uw
O el L7

=
= 100101001,00201

Copyright © Remedy IT

Interface Definition Language
Remedy IT

Your challenge - our solution

- AXCIOMA uses Interface Definition Language (IDL)
to define the type system, interaction patterns, and
components

- IDL Is vendor, programming language, and platform
agnostic

- IDL is transformed to a programming language
according to a so called language mapping

- Standardized language mappings exist for various
programming languages, including C++, C++11, C,
Java, Ruby, and others

Copyright © Remedy IT

>

0 IDLtoC++11

Remedy IT

Your challenge - our solution

= AXCIOMA supports the IDL to C++11 language
mapping

- IDL to C++11 reuses as much as possible from the
C++11 standard features

- The IDL generated types and support classes use
C++11 features to provide a safe and easy to use
API

= Business logic does not need to use C++11 language
features

/l///[q J l Lﬂl M7y
2 Wl 11/ /Y7772

100101001,00201 Copyright © Remedy IT

Generic Interaction Support

Remedy IT

Your challenge - our solution

= Generic Interaction Support (GIS) enables the
definition of generic interaction patterns

= Business logic uses interaction patterns to exchange
Information in a generic way

~ Connectors realize a specific interaction pattern

- GIS allows the encapsulation of communication
middleware, legacy systems, and hardware inside a
connector

= Combining business logic and connectors is a
deployment time decision, not an implementation
decision

PaN BN T e,

. am

100101001,00201 18 K) 4 Copyright © Remedy IT

> |
ﬁ Event Interaction Pattern
Remedy IT

Your challenge - our solution

- AXCIOMA supports an event interaction pattern
using the Generic Interaction Support

= The event interaction pattern defines extended ports
for the following roles
+ Basic many-to-many publish subscribe messaging
- Event distribution with optional user defined data

/l///[q ()l Lﬂnuw
T \eEERW //J' 17//4L77774

= W 100101001,00201 Copyright © Remedy IT

>

State Interaction Pattern

<
T
Remedy IT

Your challenge - our solution

- AXCIOMA supports a state interaction pattern using
the Generic Interaction Support

= The state interaction pattern defines extended ports
for the following roles
- Distributed state management and access

- Distributed database functionality with eventual
consistency

/l///[q ()l Lﬂnuw
S)y ,//J’ 7//4477774

S 100101001,00201 Copyright © Remedy IT

DDS Based State and Event
Interaction Patterns

Remedy IT

Your challenge - our solution

- AXCIOMA provides an implementation of the state
and event interaction patterns using DDS as
communication middleware

- Clearly separates business logic from all low level
DDS detalls

-~ DDS QoS configuration is done using XML QoS
profiles and not hardcoded into the business logic

-~ DDS Security provides secure interaction between
the components

Copyright © Remedy IT

Advantages of AXCIOMA
compared to plain DDS

Remedy IT

Your challenge - our solution

- AXCIOMA delivers the following advantages
compared to plain use of DDS

- Delivers a concrete architecture instead of a
messaging protocol

« The implemented abstraction layer delivers DDS
vendor neutrality

* Achieves improved interoperability between
components through standardized interaction
patterns

- Delivers portability of components between various
operating systems and compilers

« Comprehensive application layer MDE tooling

~ . support hides the complexity of DDS entities

At 100101001,00101 . . Copyright © Remedy IT

‘vi ZeroMQ Based Event

Interaction Patterns

Remedy IT

Your challenge - our solution

- AXCIOMA provides an implementation of the event

Interaction patterns using ZeroMQ as communication
middleware

- Clearly separates business logic from all low level
ZeroMQ details

- MQTT event implementation available as commercial
addon, no changes to the business logic required
when switching between ZeroMQ and MQTT

gl//[; ‘Vv l'kv Lﬂ:ilun :

L—$ o : B EE J 8 Vo rys

4 7/ 747 [ﬁ}@ !i*
S VL a7
Ay T 100101001,00101 i

Copyright © Remedy IT

‘vi Reqguest/Reply Interaction

Pattern

Remedy IT

Your challenge - our solution

= Using the Generic Interaction Support AXCIOMA
realizes the request/reply interaction pattern

= Support for synchronous and asynchronous
Invocations

- Delivered with a function style API

~ Defined in IDL using operations with arguments and
an optional return value

= The application code that uses this interaction
pattern is unaware of how the interaction pattern is
realized

gl//[; ‘Vv l'kv Lﬂ:ilun :

= 7 : Y 4 : PV IY Y
T B4 11 B0 ryRrsrsi ¢4 ih’ 2
T 100101001,00101 ! Copyright © Remedy IT

CORBA Based Request/Reply
Interaction Pattern

Remedy IT

Your challenge - our solution

- AXCIOMA realizes the request/reply interaction
pattern using CORBA

= The request/reply interaction pattern supports
synchronous and asynchronous invocations

= CORBA communication is realized using the
connector framework

- CORBA is a mature middleware technology
delivering a well optimized transport mechanism

= Can use various communication transports like [I1OP,
SSLIOP

= AXCIOMA uses TAOX11 as CORBA implementation
. BN I e,

. 28| 100101001,00101 | . . Copyright © Remedy IT

‘vi DDS Based Request/Reply

Interaction Pattern

Remedy IT

Your challenge - our solution

- AXCIOMA will also realize the request/reply

Interaction pattern using DDS as communication
middleware

-~ The DDS connector implementation will hide all

Implied DDS topics and glue code imposed by the
RPC4DDS standard from the business logic

-~ DDS Security provides secure interaction between
the components

gl//[; ‘Vv l'kv Lﬂ:ilun :

. - SR N I‘V('«?b Vo rys

. Iy Iy IvYy
e o 01 01004 T assvi bI 177, ;
T 100101001,00101 ! Copyright © Remedy IT

Integration of 39 Party
Middleware and Hardware

Remedy IT

Your challenge - our solution

- 3" party communication middleware, legacy
systems, and hardware are shielded from the
application developer using the GIS connectors

= Connectors hide all communication middleware and
hardware details

= AXCIOMA delivers a flexible framework for
Implementing custom connectors and code
generators

= AXCIOMA supports the definition and implementation
of user defined interaction patterns between
components

> SN

Qll/ /,(../f\ 4/ { /7 /_ﬂ' :“/»H :
P"’ 25 |

100101001,002015 &=} dun. o4 Copyright © Remedy IT

Execution Models

Remedy IT

Your challenge - our solution

- AXCIOMA provides a single threaded and reentrant
execution model as default execution model

= AXCIOMA will support the following additional
execution models

+ Single threaded and non-reentrant
« Multi threaded (thread pools)

2t DA,

= i ——
T/'///g/.ﬁ‘“ ey, //} //// I‘IIII/

. 100101001,00201

Copyright © Remedy IT

N~

ﬁ Deployment using DnCX11

Remedy IT

Your challenge - our solution

= AXCIOMA contains DnCX11 as a deployment tool
supporting various deployment options

» Centralized and decentralized deployment using
D&C compliant tools

« XML based and binary D&C compliant deployment
plans

- Easy to create text based deployment configuration
files

- Domain, node, and process as multiple levels of
deployment

B o\\ I/ (U e Ww

) ZZ::\\\\ ///l/ //[L %% / .

R | SNl)/ /77 |

A Y 100101001,00101 ! Copyright © Remedy IT

DnCX11 Single Node
Deployment

Remedy IT

Your challenge - our solution

- Deployment of one node using a node launcher

No need for a domain centralized and synchronized
deployment

Nodes can be launched and torn down
iIndependently

Locality managers can be deployed as separate
process or in-process with the node launcher
Components, connectors, and connections can be
deployed using a very simple text based
configuration file

Support for binary and XML D&C compliant
deployment plans

s 4 0/ 8" oV BV 47

TS 100101001,00101 : Copyright © Remedy IT

DnCX11 Single Locality
Deployment

Remedy IT

Your challenge - our solution

= DnCX11 allows fully decentralized deployment of a
single locality

= A locality represents one operating system process

- Support for binary and XML based D&C deployment
plans and DnCX11 text based configuration files

= Using the static configuration support a single
executable can be created containing AXCIOMA
infrastructure and user components

- Static deployment increases security and
performance

. BN I e,

. o 100101001,00101 195 K , —o4 Copyright © Remedy IT

ivi DnNCX11 Deployment
Configuration Files

Remedy IT

Your challenge - our solution

= DnCX11 has support for text based configuration files
to
« Configure deployment interceptors and handlers
- Deploy components and connectors
- Create local connections between components and

connectors
* Create remote connections between components

A BIEAAA I .
S

e T 100101001,00201 Copyright © Remedy IT

AXCIOMA Advantages
Compared to CIAO

Remedy IT

Your challenge - our solution

= AXCIOMA supports the most features from CIAO and
DANCE

= AXCIOMA has the following advantages compared to
CIAO

* Much easier to use language mapping which
Increases the productivity of the programmer
* Reduced application code

- Up to 70% footprint reduction for your component
related generated code

« Support for regeneration of business logic without
losing already implemented code

-+ Prevents possible memory leaks or invalid memory
//l '« \./ y 4 .
~ 7 access at runtime

100101001,00201 : Copyright © Remedy IT

> SN

y 29

AXCIOMA Advantages
Compared to CIAO

Remedy IT

Your challenge - our solution

-~ And AXCIOMA has even more advantages

- Simplified compilation of all IDL generated artifacts

* The request/reply interaction pattern using CORBA
IS realized using the connector framework and not
implicitly by the framework

Will realize the request/reply interaction pattern
using DDS

Simplified and more powerful deployment tooling
Framework for implementing custom connectors
Extensible logging framework

? '{'a\\\\

A

BN T e,

100101001,00201 18 K) ' Copyright © Remedy IT

N~

AXCIOMA Advantages
Compared to DANCE

Remedy IT
Your challenge - our solution
- AXCIOMA has the following advantages compared to

DANCE as deployment tool

* Improved configurability

* Improved tool consistency

- Extended deployment options (centralized, node,
and locality)

- Multiple options to support runtime debugging of
component implementations

il /) 17/ V7

= 100101001,00101

Copyright © Remedy IT

Want to know more about
AXCIOMA?

Remedy IT

Your challenge - our solution

- Contact Remedy IT at sales@remedy.nl|

= Check our website at https://www.remedy.nl
= Check AXCIOMA at https://www.axcioma.orq
= Follow us on Twitter @RemedyIT

=7 v /,J()

= 100101001,00201 Copyright © Remedy IT

mailto:sales@remedy.nl
https://www.remedy.nl/
https://www.axcioma.org/
http://www.twitter.com/RemedyIT

Remedy IT

Your challenge - our solution

Shapes AXCIOMA example

"

Copyright © Remedy IT

Example overview
Remedy IT

Your challenge - our solution

= This example demonstrates 2 components
exchanging data using the event interaction pattern

- Sender writes shapes samples to a event connector

* Recelver receives shapes samples from a event
connector

Sender Receiver

— —

: U "I LW e,

B e N iy

S /) 17/ /7 /77

= 100101001,00201 Copyright © Remedy IT

ﬁ Shape IDL definition

Remedy IT

Your challenge - our solution

- In order to exchange data we define a publish
subscribe message type in IDL which is used by all

components
- Based on the IDL message type definition AXCIOMA
will generate
« C++11 type representation
« C++11 DDS data reader and writer API
- Conversion layer to integrate a specific DDS vendor

/l///[q ‘} l Lﬂl M7
=2 2 Yexreaw 7/
f/ 2 /,y//// ’ Copyright © Remedy IT

= 100101001,00201

IDL Shapetype

Remedy IT

Your challenge - our solution

IDL definition

struct ShapeType {
string color; //Rkey
long x;
long vy;

long shapesize;

Copyright © Remedy IT

N~

ﬁ Component Definition

Remedy IT

Your challenge - our solution

- Two components are defined in this example, both
use the GIS DDS4CCM extended ports

= An extended port delivers a specific interaction
pattern
- State: state based data exchange
- Event: event based data exchange

- All extended ports are available by instantiating the
DDS4CCM templated module with a concrete data
type definition

module CCM DDS::Type <ShapeType, ShapeTypeSeqg> ShapeType conn;

B o\\ I/ (U e Ww

) ZZ::\\\\ ///l/ //[L %% / .

R | SNl /77 |

A | Y 100101001,00101 ! Copyright © Remedy IT

Component Definitions

Remedy IT

Your challenge - our solution

Sender Receiver
module Shapes { module Shapes {
component Sender { component Receiver {
port ShapeType conn::DDS Write port ShapeType conn::DDS Listen
info write; info out;

Copyright © Remedy IT

Sender implementation

Remedy IT

Your challenge - our solution

// Sender component class declaration and implementation which publishes one sample to DDS
class Sender i : public IDL::traits<CCM_Sender>::base type
{
public:
// Setter method to receive the component context
void set session context (IDL::traits<Components::SessionContext>::ref type ctx) override {
context = IDL::traits<Shapes::CCM_Sender_Context>::narrow (ctx);
}
// Lifecycle callback indicating we have received our settings, register an instance to DDS
void configuration complete () override ({
IDL::traits<Shapes::ShapeType conn::Writer>::ref type writer =
context ->get connection info write data();
instance handle = writer->register instance (square);
}
// Lifecycle callback indicating we can start our functionality, write one sample to DDS
void ccm_activate () override {
IDL::traits<Shapes::ShapeType conn::Writer>::ref type writer =
context ->get connection info write data();
writer->write one (square_, instance handle);
}
// Lifecycle callback that we are going to shutdown, unregister the instance from DDS
void ccm_passivate () override {
IDL::traits<Shapes::ShapeType conn::Writer>::ref type writer =
context ->get connection info write data();
writer->unregister instance (square , instance handle);
}
void ccm remove () override {}
private:
IDL::traits<Shapes::CCM Sender Context>::ref type context ;
DDS::InstanceHandle t 1g§tance handle ;
'on to initialize the member

e T

Copyright © Remedy IT

Remedy IT

Recelver implementation (1)

Your challenge - our solution

{

class Receiver i

b

public:

public IDL:

// Setter method to receive the component context

void set session context (IDL:
IDL::traits<Shapes:

context =

}

void configuration complete

:traits<Components:

() override {}

:SessionContext>:
:CCM_Receiver Context>:

:base type

:narrow (ctx);

:ref type ctx)

// Receiver component declaration and implementation which receives the samples from DDS
:traits<CCM Receiver>:

override {

// Lifecycle callback indicating we can start our functionality, indicate we want sample by sample

void ccm_activate ()
IDL::traitS<CCM_DDS:

override {
:DataListenerControl>:

context ->get connection info data control();

lc->mode
}
void ccm passivate ()
void ccm_remove

(CCM_DDS:

IDL::traits<Shapes:

private:
IDL::traits<Shapes:
IDL::traits<Shapes:

:ListenerMode:

:ONE_BY ONE) ;

override {}

’

:ShapeType conn:
if (!data listener) data listener =
return data_ listener_

}

:CCM_Sender Context>:
:ShapeType conn:

() override {}
// Retrieve the facet executor that implements the listener functionality

:ref type get info out data listener () {
CORBA::make reference<info out i> (context) ;

:CCM_Listener>:

:ref type lc =

:ref type context ;

:CCM_Listener>::ref type data listener

’

Copyright © Remedy IT

Recelver implementation (2)

Remedy IT

Your challenge - our solution

// Listener facet implementation, receives the sample from DDS and just dumps it to the console
class info out i: public IDL::traits<Shapes::ShapeType conn::CCM Listener>::base type
{
public:
info out i(IDL::traits<Components::CCM Receiver Context>::ref type ctx) : context (ctx) {}
// Callback to inform the component that a sample has been received by DDS
void on one data (const ShapeType& shape, CCM DDS::ReadInfo&) override {
std::cout << “Received ” << shape << std::endl;
}
void on many data (const ShapeTypeSeq&, CCM DDS::ReadInfoSeq&) override {}
private:
IDL::traits<Shapes::CCM Sender Context>::ref type context ;
bi

5% 400101001,002015 :.;/)

N\

Copyright © Remedy IT

Deployment
Remedy IT

Your challenge - our solution

- The example components can be deployed using
« Centralized deployment using the D&C compliant
deployment tools

- Deployment of one node using the single node
launcher

- Deployment of one process using the single locality
launcher

- Support for the D&C compliant deployment plans

= Support for simple text based deployment
configuration

- Easy to start and use directly from a debugger

B APAAIW ,
"/‘é oo '0 4 /,)r,///l//}li;i

L 100101001,00101 Copyright © Remedy IT

Remedy IT

Your challenge - our solution

Background slides

Copyright © Remedy IT

>

0 IDLto C++11 (1)

Remedy IT

Your challenge - our solution

-~ The IDL to C++11 language mapping is a formal
open standard created with the following goals
- Simplify development compared to IDL to C++
* Reduce amount of possible programming errors
-« Galin runtime performance
* Reduce size of application code

« Use C++11 standard types and constructs as much
as possible

/l///[q ()l Lﬂnuw
S)y ,//J’ 7//4477774

— 100101001,00101

Copyright © Remedy IT

IDL to C++11 (2)

Remedy IT

Your challenge - our solution

~ The specification is available from
http://www.omg.org/spec/CPP11

= For background, detalls, tutorials, examples see
* https://lwww.taox11.org/

2 777
= <§ q,,, 100101001,00101 B /}Y///////’l’/ Copyright © Remedy IT

http://www.omg.org/spec/CPP11
https://www.taox11.org/

TAOX11

Remedy IT

Your challenge - our solution

- Compliant with IDL to C++11 v1.3
= Support for CORBA AMI

- New IDL compiler with front end supporting IDL2,
IDL3, and IDL3+

" 1 / //////;;;;

| Aﬁmommﬁ:;

Copyright © Remedy IT

Remedy IT

Contact

Your challenge - our solution

Remedy IT
The Netherlands

tel.: +31(0)88 — 053 0000
e-mail: sales@remedy.nl
website: www.remedy.nl

Twitter: @RemedyIT

Copyright © Remedy IT

mailto:sales@remedy.nl
http://www.remedy.nl/
https://twitter.com/RemedyIT

