
AXCIOMA
An eXtendable Component-based Interoperable Open Model-driven

Architecture

The Component Framework for

Distributed, Real-Time, and Embedded Systems

AXCIOMA: the component

framework for distributed, real-time,

and embedded systems

AXCIOMA is the component technology enabling the

Industrial Internet of Things (IIoT)

The concrete communication middleware between

components is a deployment decision and does not

impact business logic

AXCIOMA integrates multiple communication

transports out of the box and more transports can be

easily added

AXCIOMA delivers portability and interoperability for

IIoT applications through a standardized component

model

For more information take a look at our website

https://www.axcioma.org/
Copyright © Remedy IT 2

https://www.axcioma.org/

What is AXCIOMA?

AXCIOMA is a comprehensive software suite

combining several Object Management Group

(OMG) open standards

• LwCCM, DDS, DDS4CCM, AMI4CCM, CORBA,

IDL, IDL2C++11, and D&C

AXCIOMA is based on

• Interoperable Open Architecture (IOA)

• Component Based Architecture (CBA)

• Service Oriented Architecture (SOA)

• Event Driven Architecture (EDA)

• Model Driven Architecture (MDA)

Copyright © Remedy IT 3

https://www.axcioma.org/

AXCIOMA

AXCIOMA supports the design, development, and

deployment of a distributed component based

architecture

A component based architecture encapsulates and

integrates the following mechanisms in a “container”

• Threading model

• Lifecycle management

• Connection management

Copyright © Remedy IT 4

What is a Component?

Independent revisable unit of software with well

defined interfaces called “ports”

Able to be packaged as an independently deployable

set of files

Smallest decomposable unit that defines standard

ports is called a “monolithic component”

A “component assembly” is an aggregation of

monolithic components or other component

assemblies

Copyright © Remedy IT 5

Why Component Based

Development? (1)

Modularity

• Components can be independently updated or

replaced without impacting the rest of a system

Reuse

• Software is reusable at the component level instead of

at the system level

Interoperability

• Well-defined ports and standards based development

ensures interoperability between application

components

Copyright © Remedy IT 6

Why Component Based

Development? (2)

Extensibility

• A Component Based Architecture (CBA) is inherently

loosely-coupled, supporting easier extension of

component and system functionality

Scalability

• Scalable from single component deployment to large

distributed multi node deployments

Reduced Complexity

• Encapsulation, modularity, separation of concerns, and

the establishment of hierarchical component

dependencies contribute to reduced design & system

complexity

Copyright © Remedy IT 7

Why Component Based

Development? (3)

Faster and Cheaper Development

• Shorter design times, more reuse and less complexity

• Faster time-to-market, faster software development

• Focus changed to composition of a software-intensive

system vs. all new design

• Lower maintenance costs

Quality & Reliability

• Reuse and test/maintenance at the component level

vs. at a monolithic system level

Copyright © Remedy IT 8

Advantages of using Open

Standards based API

Open APIs are less prone to technology

obsolescence

No vendor lock-in

Typically well vetted and designed

Reuse of existing off-the-shelf technology

• Implementations

• Tools

• Documentation

• Training

Copyright © Remedy IT 9

AXCIOMA Design &

Deployment

AXCIOMA clearly separates design, implementation,

and deployment phases

Components are designed to be location

independent and communication middleware

agnostic

Components are implemented and tested in a highly

decoupled fashion

Deployment planning happens separately based on

the complete system requirements

The AXCIOMA framework handles the lifecycle for all

components at runtime

Copyright © Remedy IT 10

MDE Tooling

MDE tools that support AXCIOMA

• Zeligsoft CX for CBDDS

• PTC Integrity Modeler IDL Profile

• CoSMIC

• Remedy IT Eclipse plugins

MDE tools provide support for

• Data modeling

• Component modeling

• Deployment modeling

• Auto generation of IDL artifacts

• Auto generation of D&C deployment plans

Copyright © Remedy IT 11

Interface Definition Language

AXCIOMA uses Interface Definition Language (IDL)

to define the type system, interaction patterns, and

components

IDL is vendor, programming language, and platform

agnostic

IDL is transformed to a programming language

according to a so called language mapping

Standardized language mappings exist for various

programming languages, including C++, C++11, C,

Java, Ruby, and others

Copyright © Remedy IT 12

IDL to C++11

AXCIOMA supports the IDL to C++11 language

mapping

IDL to C++11 reuses as much as possible from the

C++11 standard features

The IDL generated types and support classes use

C++11 features to provide a safe and easy to use

API

Business logic does not need to use C++11 language

features

Copyright © Remedy IT 13

Generic Interaction Support

Generic Interaction Support (GIS) enables the

definition of generic interaction patterns

Business logic uses interaction patterns to exchange

information in a generic way

Connectors realize a specific interaction pattern

GIS allows the encapsulation of communication

middleware, legacy systems, and hardware inside a

connector

Combining business logic and connectors is a

deployment time decision, not an implementation

decision

Copyright © Remedy IT 14

Event Interaction Pattern

AXCIOMA supports an event interaction pattern

using the Generic Interaction Support

The event interaction pattern defines extended ports

for the following roles

• Basic many-to-many publish subscribe messaging

• Event distribution with optional user defined data

Copyright © Remedy IT 15

State Interaction Pattern

AXCIOMA supports a state interaction pattern using

the Generic Interaction Support

The state interaction pattern defines extended ports

for the following roles

• Distributed state management and access

• Distributed database functionality with eventual

consistency

Copyright © Remedy IT 16

DDS Based State and Event

Interaction Patterns

AXCIOMA provides an implementation of the state

and event interaction patterns using DDS as

communication middleware

Clearly separates business logic from all low level

DDS details

DDS QoS configuration is done using XML QoS

profiles and not hardcoded into the business logic

DDS Security provides secure interaction between

the components

Copyright © Remedy IT 17

Advantages of AXCIOMA

compared to plain DDS

AXCIOMA delivers the following advantages

compared to plain use of DDS

• Delivers a concrete architecture instead of a

messaging protocol

• The implemented abstraction layer delivers DDS

vendor neutrality

• Achieves improved interoperability between

components through standardized interaction

patterns

• Delivers portability of components between various

operating systems and compilers

• Comprehensive application layer MDE tooling

support hides the complexity of DDS entities

Copyright © Remedy IT 18

ZeroMQ Based Event

Interaction Patterns

AXCIOMA provides an implementation of the event

interaction patterns using ZeroMQ as communication

middleware

Clearly separates business logic from all low level

ZeroMQ details

MQTT event implementation available as commercial

addon, no changes to the business logic required

when switching between ZeroMQ and MQTT

Copyright © Remedy IT 19

Request/Reply Interaction

Pattern

Using the Generic Interaction Support AXCIOMA

realizes the request/reply interaction pattern

Support for synchronous and asynchronous

invocations

Delivered with a function style API

Defined in IDL using operations with arguments and

an optional return value

The application code that uses this interaction

pattern is unaware of how the interaction pattern is

realized

Copyright © Remedy IT 20

CORBA Based Request/Reply

Interaction Pattern

AXCIOMA realizes the request/reply interaction

pattern using CORBA

The request/reply interaction pattern supports

synchronous and asynchronous invocations

CORBA communication is realized using the

connector framework

CORBA is a mature middleware technology

delivering a well optimized transport mechanism

Can use various communication transports like IIOP,

SSLIOP

AXCIOMA uses TAOX11 as CORBA implementation

Copyright © Remedy IT 21

DDS Based Request/Reply

Interaction Pattern

AXCIOMA will also realize the request/reply

interaction pattern using DDS as communication

middleware

The DDS connector implementation will hide all

implied DDS topics and glue code imposed by the

RPC4DDS standard from the business logic

DDS Security provides secure interaction between

the components

Copyright © Remedy IT 22

Integration of 3rd Party

Middleware and Hardware

3rd party communication middleware, legacy

systems, and hardware are shielded from the

application developer using the GIS connectors

Connectors hide all communication middleware and

hardware details

AXCIOMA delivers a flexible framework for

implementing custom connectors and code

generators

AXCIOMA supports the definition and implementation

of user defined interaction patterns between

components

Copyright © Remedy IT 23

Execution Models

AXCIOMA provides a single threaded and reentrant

execution model as default execution model

AXCIOMA will support the following additional

execution models

• Single threaded and non-reentrant

• Multi threaded (thread pools)

Copyright © Remedy IT 24

Deployment using DnCX11

AXCIOMA contains DnCX11 as a deployment tool

supporting various deployment options

• Centralized and decentralized deployment using

D&C compliant tools

• XML based and binary D&C compliant deployment

plans

• Easy to create text based deployment configuration

files

• Domain, node, and process as multiple levels of

deployment

Copyright © Remedy IT 25

DnCX11 Single Node

Deployment

Deployment of one node using a node launcher

• No need for a domain centralized and synchronized

deployment

• Nodes can be launched and torn down

independently

• Locality managers can be deployed as separate

process or in-process with the node launcher

• Components, connectors, and connections can be

deployed using a very simple text based

configuration file

• Support for binary and XML D&C compliant

deployment plans

Copyright © Remedy IT 26

DnCX11 Single Locality

Deployment

DnCX11 allows fully decentralized deployment of a

single locality

A locality represents one operating system process

Support for binary and XML based D&C deployment

plans and DnCX11 text based configuration files

Using the static configuration support a single

executable can be created containing AXCIOMA

infrastructure and user components

• Static deployment increases security and

performance

Copyright © Remedy IT 27

DnCX11 Deployment

Configuration Files

DnCX11 has support for text based configuration files

to

• Configure deployment interceptors and handlers

• Deploy components and connectors

• Create local connections between components and

connectors

• Create remote connections between components

Copyright © Remedy IT 28

AXCIOMA Advantages

Compared to CIAO

AXCIOMA supports the most features from CIAO and

DAnCE

AXCIOMA has the following advantages compared to

CIAO

• Much easier to use language mapping which

increases the productivity of the programmer

• Reduced application code

• Up to 70% footprint reduction for your component

related generated code

• Support for regeneration of business logic without

losing already implemented code

• Prevents possible memory leaks or invalid memory

access at runtime

Copyright © Remedy IT 29

AXCIOMA Advantages

Compared to CIAO

And AXCIOMA has even more advantages

• Simplified compilation of all IDL generated artifacts

• The request/reply interaction pattern using CORBA

is realized using the connector framework and not

implicitly by the framework

• Will realize the request/reply interaction pattern

using DDS

• Simplified and more powerful deployment tooling

• Framework for implementing custom connectors

• Extensible logging framework

Copyright © Remedy IT 30

AXCIOMA Advantages

Compared to DAnCE

AXCIOMA has the following advantages compared to

DAnCE as deployment tool

• Improved configurability

• Improved tool consistency

• Extended deployment options (centralized, node,

and locality)

• Multiple options to support runtime debugging of

component implementations

Copyright © Remedy IT 31

Want to know more about

AXCIOMA?

Contact Remedy IT at sales@remedy.nl

Check our website at https://www.remedy.nl

Check AXCIOMA at https://www.axcioma.org

Follow us on Twitter @RemedyIT

Copyright © Remedy IT 32

mailto:sales@remedy.nl
https://www.remedy.nl/
https://www.axcioma.org/
http://www.twitter.com/RemedyIT

Shapes AXCIOMA example

Copyright © Remedy IT 33

Example overview

This example demonstrates 2 components

exchanging data using the event interaction pattern

• Sender writes shapes samples to a event connector

• Receiver receives shapes samples from a event

connector

Copyright © Remedy IT 34

Sender ReceiverDDS

Shape IDL definition

In order to exchange data we define a publish

subscribe message type in IDL which is used by all

components

Based on the IDL message type definition AXCIOMA

will generate

• C++11 type representation

• C++11 DDS data reader and writer API

• Conversion layer to integrate a specific DDS vendor

Copyright © Remedy IT 35

IDL Shapetype

IDL definition

struct ShapeType {

string color; //@key

long x;

long y;

long shapesize;

};

Copyright © Remedy IT 36

Component Definition

Two components are defined in this example, both

use the GIS DDS4CCM extended ports

An extended port delivers a specific interaction

pattern

• State: state based data exchange

• Event: event based data exchange

All extended ports are available by instantiating the

DDS4CCM templated module with a concrete data

type definition
• module CCM_DDS::Type <ShapeType, ShapeTypeSeq> ShapeType_conn;

Copyright © Remedy IT 37

Component Definitions

Sender

module Shapes {

component Sender {

port ShapeType_conn::DDS_Write

info_write;

};

};

Receiver

module Shapes {

component Receiver {

port ShapeType_conn::DDS_Listen

info_out;

};

};

Copyright © Remedy IT 38

Sender implementation

// Sender component class declaration and implementation which publishes one sample to DDS

class Sender_i : public IDL::traits<CCM_Sender>::base_type

{

public:

// Setter method to receive the component context

void set_session_context(IDL::traits<Components::SessionContext>::ref_type ctx) override {

context_ = IDL::traits<Shapes::CCM_Sender_Context>::narrow (ctx);

}

// Lifecycle callback indicating we have received our settings, register an instance to DDS

void configuration_complete () override {

IDL::traits<Shapes::ShapeType_conn::Writer>::ref_type writer =

context_->get_connection_info_write_data();

instance_handle_ = writer->register_instance (square_);

}

// Lifecycle callback indicating we can start our functionality, write one sample to DDS

void ccm_activate () override {

IDL::traits<Shapes::ShapeType_conn::Writer>::ref_type writer =

context_->get_connection_info_write_data();

writer->write_one (square_, instance_handle_);

}

// Lifecycle callback that we are going to shutdown, unregister the instance from DDS

void ccm_passivate () override {

IDL::traits<Shapes::ShapeType_conn::Writer>::ref_type writer =

context_->get_connection_info_write_data();

writer->unregister_instance (square_, instance_handle_);

}

void ccm_remove () override {}

private:

IDL::traits<Shapes::CCM_Sender_Context>::ref_type context_;

DDS::InstanceHandle_t instance_handle_;

// Use C++11 uniform initialization to initialize the member

ShapeType square {“GREEN”, 10, 10, 1};

};

Copyright © Remedy IT 39

Receiver implementation (1)

// Receiver component declaration and implementation which receives the samples from DDS

class Receiver_i : public IDL::traits<CCM_Receiver>::base_type

{

public:

// Setter method to receive the component context

void set_session_context(IDL::traits<Components::SessionContext>::ref_type ctx) override {

context_ = IDL::traits<Shapes::CCM_Receiver_Context>::narrow (ctx);

}

void configuration_complete () override {}

// Lifecycle callback indicating we can start our functionality, indicate we want sample by sample

void ccm_activate () override {

IDL::traits<CCM_DDS::DataListenerControl>::ref_type lc =

context_->get_connection_info_data_control();

lc->mode (CCM_DDS::ListenerMode::ONE_BY_ONE);

}

void ccm_passivate () override {}

void ccm_remove () override {}

// Retrieve the facet executor that implements the listener functionality

IDL::traits<Shapes::ShapeType_conn::CCM_Listener>::ref_type get_info_out_data_listener () {

if (!data_listener_) data_listener_ = CORBA::make_reference<info_out_i> (context)_;

return data_listener_; }

private:

IDL::traits<Shapes::CCM_Sender_Context>::ref_type context_;

IDL::traits<Shapes::ShapeType_conn::CCM_Listener>::ref_type data_listener_;

};

Copyright © Remedy IT 40

Receiver implementation (2)

// Listener facet implementation, receives the sample from DDS and just dumps it to the console

class info_out_i: public IDL::traits<Shapes::ShapeType_conn::CCM_Listener>::base_type

{

public:

info_out_i(IDL::traits<Components::CCM_Receiver_Context>::ref_type ctx) : context_ (ctx) {}

// Callback to inform the component that a sample has been received by DDS

void on_one_data (const ShapeType& shape, CCM_DDS::ReadInfo&) override {

std::cout << “Received ” << shape << std::endl;

}

void on_many_data (const ShapeTypeSeq&, CCM_DDS::ReadInfoSeq&) override {}

private:

IDL::traits<Shapes::CCM_Sender_Context>::ref_type context_;

};

Copyright © Remedy IT 41

Deployment

The example components can be deployed using

• Centralized deployment using the D&C compliant

deployment tools

• Deployment of one node using the single node

launcher

• Deployment of one process using the single locality

launcher

Support for the D&C compliant deployment plans

Support for simple text based deployment

configuration

Easy to start and use directly from a debugger

Copyright © Remedy IT 42

Background slides

Copyright © Remedy IT 43

IDL to C++11 (1)

The IDL to C++11 language mapping is a formal

open standard created with the following goals

• Simplify development compared to IDL to C++

• Reduce amount of possible programming errors

• Gain runtime performance

• Reduce size of application code

• Use C++11 standard types and constructs as much

as possible

Copyright © Remedy IT 44

IDL to C++11 (2)

The specification is available from

http://www.omg.org/spec/CPP11

For background, details, tutorials, examples see

• https://www.taox11.org/

Copyright © Remedy IT 45

http://www.omg.org/spec/CPP11
https://www.taox11.org/

TAOX11

Compliant with IDL to C++11 v1.3

Support for CORBA AMI

New IDL compiler with front end supporting IDL2,

IDL3, and IDL3+

Copyright © Remedy IT 46

Contact

Remedy IT

The Netherlands

tel.: +31(0)88 – 053 0000

e-mail: sales@remedy.nl

website: www.remedy.nl

Twitter: @RemedyIT

Copyright © Remedy IT 47

mailto:sales@remedy.nl
http://www.remedy.nl/
https://twitter.com/RemedyIT

