
AXCIOMA Internals

A LwCCM implementation supporting the IDL to C++11 language mapping

Advantages of IDL to C++11

The IDL to C++11 language mapping has the

following advantages compared to the IDL to C++

language mapping

• Easier to use

• Language mapping is much safer to use

• Improved runtime performance

• Reduced training time

• Reduced development and test time

• Faster time to market

Copyright © Remedy IT2

AXCIOMA Requirements

LwCCM implementation using the IDL to C++11
Language Mapping

Existing CIAO deployment plans should be reusable
with minimal changes

Reduced footprint compared to CIAO

Reduced dependency on CORBA

Optimized set of features compared to CIAO

• No support for CCM events

• No support for the IDL ‘supports’ keyword

• Component attributes are set to their initial value
using a D&C compliant deployment tool but not
changeable through CORBA

Copyright © Remedy IT3

Prerequisites AXCIOMA

C++ compiler supporting C++11

• GCC 4.7 or newer

• Clang version 5 or newer

• Visual Studio 2015/2017/2019

• Intel C++ 2016

• Other C++ compilers have been tested but lack

features

Extensible IDL compiler supporting IDL2, IDL3, and

IDL3+

• RIDL

Implementation of the IDL to C++11 language

mapping for all IDL type constructs

• TAOX11

4 Copyright © Remedy IT

RIDL

Ruby based IDL compiler developed by Remedy IT

Front end with support for IDL2, IDL3, IDL3+, and
annotations compatible with DDS-XTypes

Supports pluggable and extensible backends

Current available backends

• IDL to Ruby

• IDL to C++

• IDL to C++11

A LwCCM C++11 backend is developed by extending
the IDL to C++11 backend

Frontend is available as Ruby Gem from
http://www.rubygems.org/gems/ridl

Copyright © Remedy IT5

http://www.rubygems.org/gems/ridl

TAOX11

Open source CORBA implementation developed by

Remedy IT

Compliant with the IDL to C++11 language mapping

Uses TAO core leveraging its portability and features

Uses RIDL as IDL compiler

Extended suite of unit tests

See https://www.taox11.org/

Copyright © Remedy IT6

https://www.taox11.org/

AXCIOMA Goals

Fix the API for component developers by using the

IDL to C++11 language mapping

Independent from the existing CIAO LwCCM

implementation

Existing CIAO deployment plans can be used with

minimum changes

Uses TAOX11 for the C++11 type system and

optional CORBA support

Uses RIDL as extensible IDL compiler

Copyright © Remedy IT7

DAnCEX11 Requirements

Be able to deploy AXCIOMA components and

connectors

Provide a flexible and powerful deployment tooling

Support plugin support for various interception points

Copyright © Remedy IT8

Requirements DAnCEX11 LM

A new DAnCEX11 Locality Manager will be

developed

Same set of features as the DAnCE LM

New internal design and implementation

Will provide same plugin support as the DAnCE LM

Copyright © Remedy IT9

AXCIOMA

https://www.axcioma.org

https://www.axcioma.org/

AXCIOMA Container Architecture

AXCIOMA container does not depend on CORBA for

its core functionality

AXCIOMA container is smaller in terms of LOC and

footprint compared to CIAO

Copyright © Remedy IT11

AXCIOMA Container

AXCIOMA container will provide services to the

components hosted

AXCIOMA installation handlers will create all

components

AXCIOMA architecture is way easier than the CIAO

architecture

Copyright © Remedy IT12

Component CORBA servant

Signature of the component CORBA servant entry

point as used by D&C will be updated with a different

return value

Name of the entry point will be kept the same which

means deployment plans don’t change

An AXCIOMA ExecutorLocator is returned which

provides access to all needed component related

entities:

• Component and facet executors

• Component context

• Component configuration values

Copyright © Remedy IT13

Executor Locator and

Configuration Values

ExecutorLocator is responsible for setting

component attributes to their initial value

Converts attribute names to concrete method

invocations onto the user implemented component

executor

Extracts the attribute value from their Any
encapsulation

Copyright © Remedy IT14

High level architecture

Copyright © Remedy IT15

Component Executor

Facet
Executor

Facet
Executor

User code
Executor Locator

C
o
n
n
e
ct
o
r(
s)

CIAOX11 Container & Deployment Interceptors

Component
Context

Facet
Executor

Generated

CIAOX11 Core

C
lie
n
ts

Component context

Caches object references for all receptacles of a

component

The CIAO SessionContext get_CCM_object is

removed

Simplified API because of the fact that the

connection_name is now used as Cookie, no

valuetypes anymore!

Copyright © Remedy IT16

Lifecycle operations

LwCCM defined lifecycle operations will go directly

from the container to the component executor using

the ExecutorLocator

Which operations are called on the component

executor is determined by the container, not by the

generated code

Copyright © Remedy IT17

Component CORBA servant

The component CORBA servant is used by D&C to
retrieve CORBA facet object references when remote
CORBA interfaces are used

The component CORBA servant is registered with the
POA using its unique D&C id

Retrieval of facet CORBA object references happens
through the POA using the unique component D&C id and
the facet name, the references are not cached in the
component CORBA servant

One CORBA component servant implementation will be
used for all user components, no user component specific
API will be available through CORBA

The component CORBA servant is not required for the
container to operate

The CORBA servant is handled within CORBA4CCM

Copyright © Remedy IT18

Connector CORBA servant

Connectors only provide local facets

Connectors don’t have CORBA mandatory parts, no

CORBA servants are needed

• A DDS4CCM connector will have no component and

facet CORBA servants

• Leads to a heavy reduction in code generation and

footprint for connectors

Copyright © Remedy IT19

CORBA4CCM connector

A CORBA4CCM connector is introduced to support

request/reply interaction between components

CORBA4CCM connector delegates all operations

and attribute access to the user provided facet

executor

No usage of inheritance for the C++11 facet CORBA

servants leads to reduced dependencies and

simplified compilation steps

Copyright © Remedy IT20

DDS4CCM

DDS4CCM connectors are implemented using

C++11

Use a similar C++ templated connector framework as

CIAO

Optimal integration requires a DDS vendor that

natively supports IDL to C++11 for

• Built in DDS entities and types

• User defined types as generated by TAOX11

• IDL defined type specific DataReader and

DataWriter

Copyright © Remedy IT21

RTI DDS integration

RTI DDS lacks support for IDL to C++11

AXCIOMA will provide C++11 API to the user and convert

internally to the RTI C++ API

• Makes the integration possible

• Can be adapted for other DDS vendors that lack C++11

support

• Templated design allows for full optimization when a DDS

vendor with native IDL to C++11 support is integrated

No usage of the RTI CORBA Compatibility Kit (CCK)

Runtime conversion of user data to the RTI C++ types

New set of RIDL backends for generating the type

conversion

Copyright © Remedy IT22

AMI4CCM

AMI4CCM connectors are implemented using C++11

and generated by RIDL

TAOX11 CORBA AMI support is used

CORBA AMI support is completely hidden inside the

AMI4CCM connector, no CORBA AMI is exposed to

the component developer

Copyright © Remedy IT23

Timer Support

Timer support is provided by the TT4CCM connector

TT4CCM shields application code from low level

middleware details

AXCIOMA does provide access to the TAOX11 ORB

through the LwCCM service registry and the TAOX11

ORB will provide access to its ACE Reactor

Future revisions of the LwCCM/UCM standard need

to address the lack of a timer concept in LwCCM

Copyright © Remedy IT24

Valuetypes

AXCIOMA modifies the LwCCM IDL to not use

valuetypes

• ConfigValue are changed to an IDL struct

• Cookie will be an IDL string simplifying the usage of

it

Not using valuetypes reduces footprint and

complexity

Copyright © Remedy IT25

Starter Executor Generation (1)

AXCIOMA uses RIDL for generating the starter code

for the component and facet executors

Unique RIDL regeneration blocks will be added to the

generated starter code

• A regeneration block is enclosed by a begin and end

marker

• Marker is unique for the file where it is used in

RIDL will read in the existing file, store the blocks and

place them back upon regeneration

Copyright © Remedy IT26

Starter Executor Generation (2)

// Some example markers, the @@{__RIDL_REGEN_MARKER__} part can be changed through the commandline

// flags of RIDL

//@@{__RIDL_REGEN_MARKER__} - BEGIN : Shapes_Receiver_Impl[src_includes]

#include "ace/OS_NS_time.h"

//@@{__RIDL_REGEN_MARKER__} - END : Shapes_Receiver_Impl[src_includes]

void

info_out_data_listener_exec_i::on_one_data (const ::ShapeType& datum, const ::CCM_DDS::ReadInfo&

info) override

{

//@@{__RIDL_REGEN_MARKER__} - BEGIN : info_out_data_listener_exec_i::on_one_data[_datum_info]

std::cout << “Received shape <“ << datum << std::endl;

//@@{__RIDL_REGEN_MARKER__} - END : info_out_data_listener_exec_i::on_one_data[_datum_info]

}

Receiver_exec_i::~Receiver_exec_i ()

{

//@@{__RIDL_REGEN_MARKER__} - BEGIN : Shapes_Receiver_Impl::Receiver_exec_i[destructor]

//@@{__RIDL_REGEN_MARKER__} - END : Shapes_Receiver_Impl::Receiver_exec_i[destructor]

}

Copyright © Remedy IT27

AXCIOMA Release

Copyright © Remedy IT28

AXCIOMA V2.2

Android, RHEL 6.x/7.x, Fedora >= 17, OpenSuSE >= 12.2,
CentOS 6.x/7.x, and Windows 32/64 using MinGW, Visual
Studio 2015, and Intel C++ 2016 as supported platforms

Support for components and connectors

CORBA support through CORBA4CCM

DDS4CCM Event and State connectors using RTI
Connext DDS 6.0.1 and OpenDDS

AMI4CCM support

TT4CCM support

Full suite of unit tests and examples

Full D&C compliant toolchain

Full documentation

Copyright © Remedy IT29

Resources

Copyright © Remedy IT30

External links

TAOX11
• https://www.taox11.org

IDL to C++11 specification
• http://www.omg.org/spec/CPP11

Copyright © Remedy IT31

https://taox11.remedy.nl/
https://www.taox11.org/
http://www.omg.org/spec/CPP11

Want to know?

Go to our AXCIOMA website at

https://www.axcioma.org/

See our other presentations at

http://www.slideshare.net/RemedyIT

Copyright © Remedy IT32

https://www.axcioma.org/
http://www.slideshare.net/RemedyIT

Contact

Remedy IT

The Netherlands

e-mail: sales@remedy.nl

website: www.remedy.nl

Twitter: @RemedyIT

Slideshare: RemedyIT

Copyright © Remedy IT 33

mailto:sales@remedy.nl
http://www.remedy.nl/
https://twitter.com/RemedyIT
http://www.slideshare.net/RemedyIT

