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Remedy IT

Your challenge - our solution

= Remedy IT is specialized in communication
middleware and component technologies

= Strong focus on open standards based solutions

= Actively involved in the Object Management Group,
chairing several OMG standardization efforts

» Our customers are in various domains including
telecom, aerospace and defense, transportation,
iIndustrial automation

= For more information take a look at our website

https://www.remedy.nl
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ﬁ What We Do

Remedy IT

Your challenge - our solution

» Global Service Delivery Partner for RTlI Connext
DDS

= Develop implementations of OMG open standards

* Open source: TAOX11, AXCIOMA, TAO, CIAQ,
R2CORBA

= Deliver services related to OMG standards including
the CORBA, CCM, and DDS standard

~ Develop open standards as part of the Object
Management Group
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What is AXCIOMA?

& 0
LONDON CONNEXT 2015
TN

Remedy IT

Your challenge - our solution

-~ AXCIOMA is a comprehensive software suite
combining several Object Management Group
(OMG) open standards

« LwCCM, DDS, DDS4CCM, AMI4ACCM, CORBA,
IDL, IDL2C++11, and D&C
= AXCIOMA is based on

* Interoperable Open Architecture (I0A)
« Component Based Architecture (CBA)
-+ Service Oriented Architecture (SOA)

- Event Driven Architecture (EDA)

» Model Driven Architecture (MDA)
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https://www.axcioma.org/
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Your challenge - our solution

= AXCIOMA supports the design, development, and

deployment of a distributed component based
architecture

= A component based architecture encapsulates and
integrates the following mechanisms in a “container”

* Threading model
- Lifecycle management
+ Connection management
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ﬁ What Is a Component?
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Your challenge - our solution

/\

» Independent revisable unit of software with well
defined interfaces, called ports

= Can be packaged as an independent deployable set
of files

- Smallest decomposable unit that defines standard
ports is called a monolithic component

- An component assembly is an aggregation of
monolithic components or other component
assemblies
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Your challenge - our solution
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Your challenge - our solution
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Your challenge - our solution
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Your challenge - our solution
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IDL CODE DEPLOY

Generate
(types and interfaces) Types and Interfaces

Deployment

INTERACTIO
PATTERNS

Interaction pattern plan
Generate . )
implementations
(connectors)

BUSINESS =l COMponent executar
(components) starter code

lement busmess loqi

ilation

Shared libraries Deployment

‘. IY/ P tools

Copyright © Remedy IT

k)
=97 400101001,00201



A
LONDON CONNEXT 2015
-wr

Component Framework

NNNNNNN fti
Remedy IT ‘
Your challenge - our solution
IDL CODE DEPLOY
G t
(types and interfaces)) frf s Types and Interfaces
N

INTERACTIO

(components)

PATTERNS implementations
(connectors)
BUSINESS =l COMponent executar

Interaction pattern

starter code

Deployment
plan

)

lement busmess loqi

ilation

k)
=97 400101001,00201

Shared libraries

/}’/ "

Deployment
tools

Copyright © Remedy IT



Interaction Patterns
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Your challenge - our solution

~ Define how components interact with the outside
world

* Request/Reply interaction

= client, server, asynchronous client, and
asynchronous server

* Event interaction
- supplier, push consumer, and pull consumer
- State interaction

= Observable, passive observer, push observer, pull
observer, and push state observer

= All these interaction patterns can be realized using
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Our AXCIOMA DDS
Challenge

Remedy IT

Your challenge - our solution

~ Integrate RTI Connext DDS into AXCIOMA
= Provide the IDL to C++11 API to our users

~ Abstract and optimize DDS through the interaction
patterns

* Request/reply
- State
* Event
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IDL to C++11 Language
Mapping (1)

Remedy IT

Your challenge - our solution

- Simplified mapping for C++
- Make use of the standard C++ library as much as
possible
- Make use of the C++11 features to

« Reduce amount of application code
- Reduce amount of possible coding errors by
providing a safer API
« Galin runtime performance
« Speedup development and testing
- Faster time to market
-~ Reduced costs
- Reduced training time
s 4 VLV BN 4
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Your challenge - our solution
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- An IDL interface maps to so called reference types

» Reference types are automatically reference counted
= A nil reference type Is represented as nullptr

- A boolean operator for reference comparison is
available

= Invoking an operation on a nil reference results in a
INV_OBJREF exception, no need whether object

references are valid throughout your business code
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Your challenge - our solution

= RTI Connext DDS currently does not support the IDL
to C++11 language mapping

= DDSX11 performs the bridging between the IDL to
C++11 and RTI Connext DDS C++ API

- Hides all vendor API details from the programmer

= Combination of

- |IDL based code generation
- C++11 code generation
« Core support classes and templates
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DDSX11 Conversion traits

Remedy IT

Your challenge - our solution

- For DDSX11 the C++11 types are leading

= For each IDL defined type we provide a trait with
helper methods to convert between C++ and C++11

- Basic type traits are part of the core

« Constructed type traits are generated by our RIDL
IDL compiler

- Generated for a specific vendor
= DDSX11 uses the traits and is unaware of the real
type
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DDSX11 Conversion traits

Remedy IT

Your challenge - our solution

- Conversion traits are currently optimized for RTI
Connext DDS using the ‘old” C++ API

= [raits can be generated differently for other vendors
or a different RTI version

- At the moment the C++ and C++11 type are the
same the conversion traits are optimized away by the
compiler

- DDSX11 and user code doesn’t need to be changed
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Your challenge - our solution

Optimizing DDS Usage

= DDS API is hidden from the programmer

- Knowledge about how DDS setup is part of the
connector

-~ The DDS usage knowledge is implemented and
optimized once
« Usage of domain participants (how many)
* Reuse of topics
« Clean shutdown of DDS

= DDSX11 can use IDL4 annotations which are
converted to the DDS vendor specific setting
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ivi Component and DDS
Execution Model
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Your challenge - our solution

- Components run in a single threaded, re-entrant
environment

= Callbacks from DDS threads are going dispatched
onto our main thread

~ No locking in user code necessary

- Additional Execution Models will be available for
more complex execution environments
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Your challenge - our solution

= All our connector and framework functionality has to
be tested automatically

= No need for special DDS test connectors

= Special test components that trigger fault conditions

« Sometimes need to be combined with specific QoS
settings

» On heavy loads sometimes DomainParticipant
discovery is missed

- Wait on DDS callbacks like publication_matched
before starting the real test code

- Keep QoS and configuration as simple as possible
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Your challenge - our solution

Publisher EvfEinlt BB Subscriber

interaction interaction

@ RTI Shapes Demo - Domain 0
Eile \Wiew Publish Subscribe Controls Help

i
(©
x

Request/Reply —
interaction Square

Circle
Triangle

Subscribe

Square
Circle

Triangle

Controls
Celete All

Pause Publishing
Hide History
Configuration

Request/Reply
interaction

Name| Data Type |Type | Color Partitinns| Readﬂ'ake| QoS Settings | Reliability =

Square Shape Extended | Sub * Read() Default::Default False
Square Shape Extended | Pub BLUE Default::Default True
Controller Circle = Shape Extended | Pub BLUE Default::Default True C
| 1< >

- OI..Ith..It l LegendJ

]
|Ready on domain 0
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Generated ShapeType o

Class 2

Remedy IT

Your challenge - our solution

class ShapeType
{
public:
ShapeType () = default;
~ShapeType () = default;
ShapeType (const ShapeType&) = default;
ShapeType (ShapeTypeé&&) = default;
ShapeType (color type color, int32 t x, int32 t y, int32 t shapesize);
ShapeType& operator= (const ShapeType&) = default;
ShapeType& operator= (ShapeType&&) = default;

// Getters and Setters
private:
// Struct members as private members

};

ShapeType shape {"GREEN", 0, 0, 15 };

std: :cout << “Created ShapeType " << shape << std::endl;
ShapeType shapel = shape;

ShapeType shape2 (shapel)
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Your challenge - our solution

/// Component Executor Implementation Class : Publisher comp exec i
class Pubisher comp exec i final
public virtual IDL::traits<CCM Publisher comp>::base_ type

{
public:

/// Constructor

Publisher comp exec i ();

//@@{__RIDL REGEN MARKER } - END

Shapes Publisher comp Impl::Publisher comp exec i[ctor]

/// Destructor
virtual ~Publisher comp exec i ();

/** @name Component port operations. */

//@{

/// Factory method and getter for the control facet

/// Qreturn existing instance of facet if one exists, else creates it
virtual IDL::traits<Shapes::CCM Control>::ref type

get_control () override;

//@}
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Your challenge - our solution

Shapes: :ReturnStatus
control exec i::setLocation (
uintlé t x,
uintlé_t y)

Shapes: :ReturnStatus status = Shapes::ReturnStatus::RETURN_ ERROR;
auto cex = IDL::traits<Publisher comp exec_i>::narrow (
this->component executor_ .lock ());
if (cex)
status = cex->setLocation (x, y);
else
std: :cout << "setlocation - failed to lock executor." << std::endl;
return status;
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Your challenge - our solution

// Get the writer port which we use to write a DDS sample
IDL: :traits< ::Shapes: :ShapeType conn: :Writer>::ref type writer =
this->context ->get connection info write data ()

// Write one sample square for the given instance handle
writer->write one (this->square , this->instance_ handle )
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Your challenge - our solution

// Data is delivered through a callback
void
info out data listener exec i::on one data (
const ::ShapeTypeé& datum,
const ::CCM _DDS::ReadInfoé&)

std: :cout << "Received " << datum << std::endl;
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Your challenge - our solution
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DDS fits perfect into a component based approach

DDSX11 abstracts vendor differences and improves
portability of user code

Fully automated testing is possible but takes time to
Implement

IDL to C++11 simplifies user code, increases
performance, and reduces time to implement
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Remedy IT
The Netherlands

e-mail: sales@remedy.nl

website: www.remedy.nl

Twitter: @RemedyIT
Slideshare: RemedyIT
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