
Integrating DDS into AXCIOMA,

the component approach

Johnny Willemsen (jwillemsen@remedy.nl)

CTO Remedy IT

https://www.remedy.nl

Remedy IT

Remedy IT is specialized in communication

middleware and component technologies

Strong focus on open standards based solutions

Actively involved in the Object Management Group,

chairing several OMG standardization efforts

Our customers are in various domains including

telecom, aerospace and defense, transportation,

industrial automation

For more information take a look at our website

https://www.remedy.nl

Copyright © Remedy IT2

https://www.remedy.nl/

What We Do

Global Service Delivery Partner for RTI Connext

DDS

Develop implementations of OMG open standards

• Open source: TAOX11, AXCIOMA, TAO, CIAO,

R2CORBA

Deliver services related to OMG standards including

the CORBA, CCM, and DDS standard

Develop open standards as part of the Object

Management Group

Copyright © Remedy IT3

What is AXCIOMA?

AXCIOMA is a comprehensive software suite

combining several Object Management Group

(OMG) open standards

• LwCCM, DDS, DDS4CCM, AMI4CCM, CORBA,

IDL, IDL2C++11, and D&C

AXCIOMA is based on

• Interoperable Open Architecture (IOA)

• Component Based Architecture (CBA)

• Service Oriented Architecture (SOA)

• Event Driven Architecture (EDA)

• Model Driven Architecture (MDA)

Copyright © Remedy IT 4

https://www.axcioma.org/

AXCIOMA

AXCIOMA supports the design, development, and

deployment of a distributed component based

architecture

A component based architecture encapsulates and

integrates the following mechanisms in a “container”

• Threading model

• Lifecycle management

• Connection management

Copyright © Remedy IT 5

What Is a Component?

Independent revisable unit of software with well

defined interfaces, called ports

Can be packaged as an independent deployable set

of files

Smallest decomposable unit that defines standard

ports is called a monolithic component

An component assembly is an aggregation of

monolithic components or other component

assemblies

Copyright © Remedy IT6

Component

Copyright © Remedy IT

Provides

(facet)

attributes

Component

Configuration

Life cycle

Uses

(receptacle)

attributes

Component

Assembly

Configuration

Life cycle
callbacks

7

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT8

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT9

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT10

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT11

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT12

Compilation

IDL CODE DEPLOY

DATA
(types and interfaces)

INTERACTION

PATTERNS

BUSINESS

(connectors)

(components)

U
se

s
Generate

Generate

Generate

Types and Interfaces

Interaction pattern

implementations

Component executor

starter code

Deployment
plan

Shared libraries
Deployment

tools

Implement business logic

Component Framework

Copyright © Remedy IT13

Compilation

Interaction Patterns

Define how components interact with the outside

world

• Request/Reply interaction

client, server, asynchronous client, and

asynchronous server

• Event interaction

supplier, push consumer, and pull consumer

• State interaction

observable, passive observer, push observer, pull

observer, and push state observer

All these interaction patterns can be realized using

DDS

Copyright © Remedy IT14

Our AXCIOMA DDS

Challenge

Integrate RTI Connext DDS into AXCIOMA

Provide the IDL to C++11 API to our users

Abstract and optimize DDS through the interaction

patterns

• Request/reply

• State

• Event

Copyright © Remedy IT 15

IDL to C++11 Language

Mapping (I)

Copyright © Remedy IT

Simplified mapping for C++

• Make use of the standard C++ library as much as

possible

Make use of the C++11 features to

• Reduce amount of application code

• Reduce amount of possible coding errors by
providing a safer API

• Gain runtime performance

• Speedup development and testing

Faster time to market

Reduced costs

Reduced training time

16

IDL to C++11 Language

Mapping (II)

An IDL interface maps to so called reference types

Reference types are automatically reference counted

A nil reference type is represented as nullptr

A boolean operator for reference comparison is

available

Invoking an operation on a nil reference results in a
INV_OBJREF exception, no need whether object

references are valid throughout your business code

Copyright © Remedy IT17

DDSX11

RTI Connext DDS currently does not support the IDL

to C++11 language mapping

DDSX11 performs the bridging between the IDL to

C++11 and RTI Connext DDS C++ API

Hides all vendor API details from the programmer

Combination of

• IDL based code generation

• C++11 code generation

• Core support classes and templates

Copyright © Remedy IT 18

DDSX11 Conversion traits

For DDSX11 the C++11 types are leading

For each IDL defined type we provide a trait with

helper methods to convert between C++ and C++11

• Basic type traits are part of the core

• Constructed type traits are generated by our RIDL

IDL compiler

Generated for a specific vendor

DDSX11 uses the traits and is unaware of the real

type

Copyright © Remedy IT 19

DDSX11 Conversion traits

Conversion traits are currently optimized for RTI

Connext DDS using the ‘old’ C++ API

Traits can be generated differently for other vendors

or a different RTI version

At the moment the C++ and C++11 type are the

same the conversion traits are optimized away by the

compiler

• DDSX11 and user code doesn’t need to be changed

Copyright © Remedy IT 20

Optimizing DDS Usage

DDS API is hidden from the programmer

Knowledge about how DDS setup is part of the

connector

The DDS usage knowledge is implemented and

optimized once

• Usage of domain participants (how many)

• Reuse of topics

• Clean shutdown of DDS

DDSX11 can use IDL4 annotations which are

converted to the DDS vendor specific setting

Copyright © Remedy IT 21

Component and DDS

Execution Model

Components run in a single threaded, re-entrant

environment

Callbacks from DDS threads are going dispatched

onto our main thread

No locking in user code necessary

Additional Execution Models will be available for

more complex execution environments

Copyright © Remedy IT22

Testing

All our connector and framework functionality has to

be tested automatically

No need for special DDS test connectors

Special test components that trigger fault conditions

• Sometimes need to be combined with specific QoS

settings

On heavy loads sometimes DomainParticipant

discovery is missed

• Wait on DDS callbacks like publication_matched

before starting the real test code

Keep QoS and configuration as simple as possible

Copyright © Remedy IT23

Shapes Example

Copyright © Remedy IT

…

Controller

Request/Reply
interaction

Request/Reply
interaction

Publisher
Event

interaction
Event

interaction
Subscriber …

24

Generated ShapeType

Class

Copyright © Remedy IT25

class ShapeType

{

public:

ShapeType () = default;

~ShapeType () = default;

ShapeType (const ShapeType&) = default;

ShapeType (ShapeType&&) = default;

ShapeType (color_type color, int32_t x, int32_t y, int32_t shapesize);

ShapeType& operator= (const ShapeType&) = default;

ShapeType& operator= (ShapeType&&) = default;

…

// Getters and Setters

private:

// Struct members as private members

};

ShapeType shape {"GREEN", 0, 0, 15 };

std::cout << “Created ShapeType " << shape << std::endl;

ShapeType shape1 = shape;

ShapeType shape2 (shape1);

Component Executor

Class

Copyright © Remedy IT

/// Component Executor Implementation Class : Publisher_comp_exec_i

class Pubisher_comp_exec_i final

: public virtual IDL::traits<CCM_Publisher_comp>::base_type

{

public:

/// Constructor

Publisher_comp_exec_i ();

//@@{__RIDL_REGEN_MARKER__} - END :

Shapes_Publisher_comp_Impl::Publisher_comp_exec_i[ctor]

/// Destructor

virtual ~Publisher_comp_exec_i ();

/** @name Component port operations. */

//@{

/// Factory method and getter for the control facet

/// @return existing instance of facet if one exists, else creates it

virtual IDL::traits<Shapes::CCM_Control>::ref_type

get_control () override;

//@}

...

26

Facet Executor Class

Copyright © Remedy IT

Shapes::ReturnStatus

control_exec_i::setLocation (

uint16_t x,

uint16_t y)

{

Shapes::ReturnStatus status = Shapes::ReturnStatus::RETURN_ERROR;

auto cex = IDL::traits<Publisher_comp_exec_i>::narrow (

this->component_executor_.lock ());

if (cex)

status = cex->setLocation (x, y);

else

std::cout << "setLocation - failed to lock executor." << std::endl;

return status;

}

27

Write a DDS sample

Copyright © Remedy IT 28

// Get the writer port which we use to write a DDS sample

IDL::traits< ::Shapes::ShapeType_conn::Writer>::ref_type writer =

this->context_->get_connection_info_write_data ();

// Write one sample square for the given instance handle

writer->write_one (this->square_, this->instance_handle_);

Receive a DDS sample

Copyright © Remedy IT 29

// Data is delivered through a callback

void

info_out_data_listener_exec_i::on_one_data (

const ::ShapeType& datum,

const ::CCM_DDS::ReadInfo&)

{

std::cout << "Received " << datum << std::endl;

}

Conclusion

DDS fits perfect into a component based approach

DDSX11 abstracts vendor differences and improves

portability of user code

Fully automated testing is possible but takes time to

implement

IDL to C++11 simplifies user code, increases

performance, and reduces time to implement

Copyright © Remedy IT 30

Contact

Remedy IT
The Netherlands

e-mail: sales@remedy.nl
website: www.remedy.nl

Twitter: @RemedyIT
Slideshare: RemedyIT

Copyright © Remedy IT 31

mailto:sales@remedy.nl
http://www.remedy.nl/
https://twitter.com/RemedyIT
http://www.slideshare.net/RemedyIT

