: ﬂi Presents
LONDON CONNEXT CONFERENCE 2015 é

Connecting Our Users: The DDS Experts. — October 14-15, 2015
Remedy IT

Your challenge - our solution

Integrating DDS into AXCIOMA,
the component approach

Johnny Willemsen (jwillemsen@remedy.nl)
CTO Remedy IT
https://www.remedy.nl

N/
LONDON CONNEXT 2015
5‘%:\': : ,:/"'\s.' y

DDS

Remedy IT

Your challenge - our solution

= Remedy IT is specialized in communication
middleware and component technologies

= Strong focus on open standards based solutions

= Actively involved in the Object Management Group,
chairing several OMG standardization efforts

» Our customers are in various domains including
telecom, aerospace and defense, transportation,
iIndustrial automation

= For more information take a look at our website

https://www.remedy.nl
} %\\\“ %l///[:x ‘V l' |/M7 ’
) . s LiERE s 4 P Issd {7 i 4 iﬁll
2. = 100101001,00101 ; Copyright © Remedy IT

https://www.remedy.nl/

>
ﬁ What We Do

Remedy IT

Your challenge - our solution

» Global Service Delivery Partner for RTlI Connext
DDS

= Develop implementations of OMG open standards

* Open source: TAOX11, AXCIOMA, TAO, CIAQ,
R2CORBA

= Deliver services related to OMG standards including
the CORBA, CCM, and DDS standard

~ Develop open standards as part of the Object
Management Group

L B APAAIs,
,_/: &N o ¢ 4 //)" 7//4197774

e 100101001,00201 Copyright © Remedy IT

What is AXCIOMA?

& 0
LONDON CONNEXT 2015
TN

Remedy IT

Your challenge - our solution

-~ AXCIOMA is a comprehensive software suite
combining several Object Management Group
(OMG) open standards

« LwCCM, DDS, DDS4CCM, AMI4ACCM, CORBA,
IDL, IDL2C++11, and D&C
= AXCIOMA is based on

* Interoperable Open Architecture (I0A)
« Component Based Architecture (CBA)
-+ Service Oriented Architecture (SOA)

- Event Driven Architecture (EDA)

» Model Driven Architecture (MDA)

/I//[Yo v

q A \ %
g
} RN

A

@ ' @ _ r4 'y Py ﬁ
g % 17 ié_ / f’f,af J iﬁi ll

’%i\‘*‘“ 100101001,00101 Copyright © Remedy IT

https://www.axcioma.org/

>

§0 AXCIOMA -

A
nnnnnnn rb
Remedy IT

Your challenge - our solution

= AXCIOMA supports the design, development, and

deployment of a distributed component based
architecture

= A component based architecture encapsulates and
integrates the following mechanisms in a “container”

* Threading model
- Lifecycle management
+ Connection management

VT (?l W,

o il L

T 100101001,00101

Copyright © Remedy IT

}V
ﬁ What Is a Component?

Remedy IT

Your challenge - our solution

/\

» Independent revisable unit of software with well
defined interfaces, called ports

= Can be packaged as an independent deployable set
of files

- Smallest decomposable unit that defines standard
ports is called a monolithic component

- An component assembly is an aggregation of
monolithic components or other component
assemblies

s el /) 17/ (Y /7

= ol 100101001,00101

Copyright © Remedy IT

Component ..

-
| \

attributes

Remedy IT

Your challenge - our solution

attributes

Uses
(receptacle)

Provides

(facet) 4

\ Assembly /

L

S o el Life cycle
P e PR TS callbacks

==) Dy ey & o =

Copyright © Remedy IT

O
&
Component Framework

7 ; N
nnnnnnnn rt
DDs N

Remedy IT

Your challenge - our solution

IDL CODE DEPLOY

G t
(. DATA ") Types and Interfaces

Deployment

plan

Interaction pattern
implementations

INTERACTION e p—
PATTERNS

(connectors)
BUSINESS
(components)

Implement business logic

Component|executar
starter code

ey Shared libraries el

V. KRN | /r / 7 tools

s g
= 100101001,00101 A Copyright © Remedy IT

O
&
Component Framework

/ ; N
nnnnnnnn rt
DDs N

Remedy IT

Your challenge - our solution

IDL CODE DEPLOY

G t
(. DATA ") Types and Interfaces

Deployment

plan

Interaction pattern
implementations

INTERACTION p—
PATTERNS

(connectors)
BUSINESS
(components)

Implement business logic

Component|executar
starter code

e Shared libraries Deployment

V.NEE D | /r / 74 tools

B b
S T 100101001100101 = Copyright © Remedy IT

O
&
Component Framework

N
NNNNNNN rt)
DDS $

Remedy IT

Your challenge - our solution

IDL CODE DEPLOY

Generate
(types and interfaces) Types and Interfaces

Deployment

INTERACTIO
PATTERNS

Interaction pattern plan
Generate .)
implementations
(connectors)

BUSINESS =l COMponent executar
(components) starter code

Implement business logic

Shared libraries Deployment

‘. IY/ P tools

Copyright © Remedy IT

k)
=97 400101001,00201

O
&
Component Framework

N
NNNNNNN rt)
DDS $

Remedy IT

Your challenge - our solution

IDL CODE DEPLOY

Generate
(types and interfaces) Types and Interfaces

Deployment

INTERACTIO
PATTERNS

Interaction pattern plan
Generate .)
implementations
(connectors)

BUSINESS =l COMponent executar
(components) starter code

v . :
lement business loqi

Shared libraries Deployment

‘. IY/ P tools

Copyright © Remedy IT

k)
=97 400101001,00201

O
&
Component Framework

N
NNNNNNN rt)
DDS $

Remedy IT

Your challenge - our solution

IDL CODE DEPLOY

Generate
(types and interfaces) Types and Interfaces

Deployment

INTERACTIO
PATTERNS

Interaction pattern plan
Generate .)
implementations
(connectors)

BUSINESS =l COMponent executar
(components) starter code

lement busmess loqi

ilation

Shared libraries Deployment

‘. IY/ P tools

Copyright © Remedy IT

k)
=97 400101001,00201

A
LONDON CONNEXT 2015
-wr

Component Framework

NNNNNNN fti
Remedy IT ‘
Your challenge - our solution
IDL CODE DEPLOY
G t
(types and interfaces)) frf s Types and Interfaces
N

INTERACTIO

(components)

PATTERNS implementations
(connectors)
BUSINESS =l COMponent executar

Interaction pattern

starter code

Deployment
plan

)

lement busmess loqi

ilation

k)
=97 400101001,00201

Shared libraries

/}’/ "

Deployment
tools

Copyright © Remedy IT

Interaction Patterns

&y
LONDON CONNEXT 2015

NNNNNNN rb
DDs

Remedy IT

Your challenge - our solution

~ Define how components interact with the outside
world

* Request/Reply interaction

= client, server, asynchronous client, and
asynchronous server

* Event interaction
- supplier, push consumer, and pull consumer
- State interaction

= Observable, passive observer, push observer, pull
observer, and push state observer

= All these interaction patterns can be realized using

DDS
S SV 4
-y VAR / I)' 7//477774

= 100101001,00101 Copyright © Remedy IT

Our AXCIOMA DDS
Challenge

Remedy IT

Your challenge - our solution

~ Integrate RTI Connext DDS into AXCIOMA
= Provide the IDL to C++11 API to our users

~ Abstract and optimize DDS through the interaction
patterns

* Request/reply
- State
* Event

% e /,J()

. 100101002,00201

Copyright © Remedy IT

N~

IDL to C++11 Language
Mapping (1)

Remedy IT

Your challenge - our solution

- Simplified mapping for C++
- Make use of the standard C++ library as much as
possible
- Make use of the C++11 features to

« Reduce amount of application code
- Reduce amount of possible coding errors by
providing a safer API
« Galin runtime performance
« Speedup development and testing
- Faster time to market
-~ Reduced costs
- Reduced training time
s 4 VLV BN 4

s el /) 17/ (Y /7

= ol 100101001,00101

Copyright © Remedy IT

»>{ IDLto C++11 Language * ®

F
[] LONDON CONNEXT 2015
Remedy IT

Your challenge - our solution

\ 7
\ ;/
&

- An IDL interface maps to so called reference types

» Reference types are automatically reference counted
= A nil reference type Is represented as nullptr

- A boolean operator for reference comparison is
available

= Invoking an operation on a nil reference results in a
INV_OBJREF exception, no need whether object

references are valid throughout your business code

QI///L, V:v I' y Tlnn '

_~>E;$" Al ' ® | @ ‘yi
—

= U = F ii’ /
W 100101001,00101

I I P IYIY Y
Yooy, & 7
i

Copyright © Remedy IT

>

DDSX11

<
T
Remedy IT

Your challenge - our solution

= RTI Connext DDS currently does not support the IDL
to C++11 language mapping

= DDSX11 performs the bridging between the IDL to
C++11 and RTI Connext DDS C++ API

- Hides all vendor API details from the programmer

= Combination of

- |IDL based code generation
- C++11 code generation
« Core support classes and templates

/l///lq. VA
2 et

,,ﬁ: =90 100101001,00201 Copyright © Remedy IT

DDSX11 Conversion traits

Remedy IT

Your challenge - our solution

- For DDSX11 the C++11 types are leading

= For each IDL defined type we provide a trait with
helper methods to convert between C++ and C++11

- Basic type traits are part of the core

« Constructed type traits are generated by our RIDL
IDL compiler

- Generated for a specific vendor
= DDSX11 uses the traits and is unaware of the real
type

'/;/l/ //[3 P, l Lﬂ 1 M7
= el /) /1L /77

e 100101001,00101 Copyright © Remedy IT

DDSX11 Conversion traits

Remedy IT

Your challenge - our solution

- Conversion traits are currently optimized for RTI
Connext DDS using the ‘old” C++ API

= [raits can be generated differently for other vendors
or a different RTI version

- At the moment the C++ and C++11 type are the
same the conversion traits are optimized away by the
compiler

- DDSX11 and user code doesn’t need to be changed

'/;/l/ //[3 P, l Lﬂ VM7
o el /2 17/ (/77

e 100101001,00101 Copyright © Remedy IT

N~

Remedy IT

Your challenge - our solution

Optimizing DDS Usage

= DDS API is hidden from the programmer

- Knowledge about how DDS setup is part of the
connector

-~ The DDS usage knowledge is implemented and
optimized once
« Usage of domain participants (how many)
* Reuse of topics
« Clean shutdown of DDS

= DDSX11 can use IDL4 annotations which are
converted to the DDS vendor specific setting

) ‘l%‘\ ‘\
HAN

ﬁ'})zl.] | 4%

N e e NI,

= 100101001,00101

Copyright © Remedy IT

ivi Component and DDS
Execution Model

LONDON CONNEXT 2015

NNNNNNN rb
DDs

Remedy IT

Your challenge - our solution

- Components run in a single threaded, re-entrant
environment

= Callbacks from DDS threads are going dispatched
onto our main thread

~ No locking in user code necessary

- Additional Execution Models will be available for
more complex execution environments

B AN
,_/: TN o ¢ //)" 7//4L7777

- 100101001,00101 Copyright © Remedy IT

> @

[] ‘\\3/’: s //"
N
LONDON CONNEXT 2015
5‘%:\': : ,:/"'\s.' y
DDS

Remedy IT

Your challenge - our solution

= All our connector and framework functionality has to
be tested automatically

= No need for special DDS test connectors

= Special test components that trigger fault conditions

« Sometimes need to be combined with specific QoS
settings

» On heavy loads sometimes DomainParticipant
discovery is missed

- Wait on DDS callbacks like publication_matched
before starting the real test code

- Keep QoS and configuration as simple as possible
QI/ //ZS.. V:v I' y TIM7'

.Eg‘ i
= 100101001,00101

'SP IYIYY
Aip.égf;'if-’_’;‘ é ii’/

Copyright © Remedy IT

Shapes Example - -

o~ : "N v k.\
CONNEXT | (ftl |
Remedy IT IR

Your challenge - our solution

Publisher EvfEinlt BB Subscriber

interaction interaction

@ RTI Shapes Demo - Domain 0
Eile \Wiew Publish Subscribe Controls Help

i
(©
x

Request/Reply —
interaction Square

Circle
Triangle

Subscribe

Square
Circle

Triangle

Controls
Celete All

Pause Publishing
Hide History
Configuration

Request/Reply
interaction

Name| Data Type |Type | Color Partitinns| Readﬂ'ake| QoS Settings | Reliability =

Square Shape Extended | Sub * Read() Default::Default False
Square Shape Extended | Pub BLUE Default::Default True
Controller Circle = Shape Extended | Pub BLUE Default::Default True C
| 1< >

- OI..Ith..It l LegendJ

]
|Ready on domain 0

m‘”ﬁ ~ . .40010100%,0020%" /- ! — Copyright © Remedy IT

]
g
[N

Generated ShapeType o

Class 2

Remedy IT

Your challenge - our solution

class ShapeType
{
public:
ShapeType () = default;
~ShapeType () = default;
ShapeType (const ShapeType&) = default;
ShapeType (ShapeTypeé&&) = default;
ShapeType (color type color, int32 t x, int32 t y, int32 t shapesize);
ShapeType& operator= (const ShapeType&) = default;
ShapeType& operator= (ShapeType&&) = default;

// Getters and Setters
private:
// Struct members as private members

};

ShapeType shape {"GREEN", 0, 0, 15 };

std: :cout << “Created ShapeType " << shape << std::endl;
ShapeType shapel = shape;

ShapeType shape2 (shapel)

25 Copyright © Remedy IT

Component Executor -

Class .

Remedy IT

Your challenge - our solution

/// Component Executor Implementation Class : Publisher comp exec i
class Pubisher comp exec i final
public virtual IDL::traits<CCM Publisher comp>::base_ type

{
public:

/// Constructor

Publisher comp exec i ();

//@@{__RIDL REGEN MARKER } - END

Shapes Publisher comp Impl::Publisher comp exec i[ctor]

/// Destructor
virtual ~Publisher comp exec i ();

/** @name Component port operations. */

//@{

/// Factory method and getter for the control facet

/// Qreturn existing instance of facet if one exists, else creates it
virtual IDL::traits<Shapes::CCM Control>::ref type

get_control () override;

//@}

26 Copyright © Remedy IT

O
Facet Executor Class

rt)

Remedy IT

Your challenge - our solution

Shapes: :ReturnStatus
control exec i::setLocation (
uintlé t x,
uintlé_t y)

Shapes: :ReturnStatus status = Shapes::ReturnStatus::RETURN_ ERROR;
auto cex = IDL::traits<Publisher comp exec_i>::narrow (
this->component executor_ .lock ());
if (cex)
status = cex->setLocation (x, y);
else
std: :cout << "setlocation - failed to lock executor." << std::endl;
return status;

27 Copyright © Remedy IT

o
Write a DDS sample

rti

Remedy IT

Your challenge - our solution

// Get the writer port which we use to write a DDS sample
IDL: :traits< ::Shapes: :ShapeType conn: :Writer>::ref type writer =
this->context ->get connection info write data ()

// Write one sample square for the given instance handle
writer->write one (this->square , this->instance_ handle)

28 Copyright © Remedy IT

Receive a DDS sample i)
'h&ﬂﬂ‘ﬂd!ll‘l ONNEXT rti

Your challenge - our solution

// Data is delivered through a callback
void
info out data listener exec i::on one data (
const ::ShapeTypeé& datum,
const ::CCM _DDS::ReadInfoé&)

std: :cout << "Received " << datum << std::endl;

29 Copyright © Remedy IT

>
T

Remedy IT

Conclusion »-.

A
nnnnnnn rb
DDs

Your challenge - our solution

ﬁ

DDS fits perfect into a component based approach

DDSX11 abstracts vendor differences and improves
portability of user code

Fully automated testing is possible but takes time to
Implement

IDL to C++11 simplifies user code, increases
performance, and reduces time to implement

Jzz(.% LA

v s /Y /1 G 1h

100101001,00201 ‘ Copyright © Remedy IT

Remedy IT

Contact

LONDON CONNEXT 2015

7= :
(e &@

Your challenge - our solution

Remedy IT
The Netherlands

e-mail: sales@remedy.nl

website: www.remedy.nl

Twitter: @RemedyIT
Slideshare: RemedyIT

Copyright © Remedy IT

mailto:sales@remedy.nl
http://www.remedy.nl/
https://twitter.com/RemedyIT
http://www.slideshare.net/RemedyIT

