
Tailoring a Component

Framework With

User-Defined Connectors

March 18, 2013

Mark Hayman
Consulting Systems Architect

Northrop Grumman Corporation

OMG Component Information Day

Component Framework Customization
Leveraging Generic Interaction Support (GIS) for Specific Domains

• GIS enables the encapsulation of domain specific functionality, drivers, alternative
middleware, communication interfaces, or most anything within a “connector”

– Connectors are concretely implemented as component “fragments” that are “collocated” with
application components in the same component server process + container at deployment

• Connectors offer two key interfaces

– Portability Interface: API exposed vertically to application components, defined in IDL as one
or more aggregated sets of “local” interfaces called an “extended port,” and compiled to simple
virtual function calls (very low overhead)

– Interoperability Interface: Underlying, hidden, horizontal communication protocol between all
like fragment instances, implemented however desired w/o impact to application components

• Custom connectors can be designed for unique applications

– By leveraging a GIS compliant LwCCM component framework
(or future UCM) that allows you to build your own connectors

– By leveraging model driven architecture (MDA) tools that
make design, IDL generation, and deployment of components
that use instantiations of them very easy

2

User

Component A

User

Component B

DDS_Write DDS_Listen

ServiceA

DDS_Update DDS_Read

ServiceB

TopicX using DDS_Event Connector

TopicY using DDS_State Connector

Service Port

Client Port

Subscriber Port

Publisher Port

Port Role Key

Basic Ports

GIS Extended

Ports

Example Use of Normative DDS Connectors per the OMG DDS4CCM Spec

ClientA

ClientB

DDS4CCM Connectors
Logical Extended Ports Implemented by Underlying Fragments

3

User

Component A

User

Component B

DDS_Write DDS_Listen

ServiceA

DDS_Update DDS_Read

ServiceB

TopicX using DDS_Event Connector

TopicY using DDS_State Connector
Logical View

DDS_Update

DDS_Get

DDS_Listen

ConnectorStatusListener

DDS_Read

DDS_StateListen

DDS_Update

DDS_Get

DDS_Listen

ConnectorStatusListener

DDS_Read

DDS_StateListen

DDS_Write

DDS_Get

DDS_Listen

ConnectorStatusListener

DDS_Write

DDS_Get

DDS_Listen

ConnectorStatusListener

Extended Port View

User

Component A

DDS_State

Connector

Component

Fragment

User

Component B

attributes

DDS_Write

DDS_Event

Connector

Component

Fragment

 attributes

DDS_Event

Connector

Component

Fragment

attributes

ServiceB

ServiceA

DDS

RTPS

Component Server Process + Container A Component Server Process + Container B

DDS

RTPS

CORBA

IIOP

TopicX

TopicY

DDS_State

Connector

Component

Fragment

attributes
CIAO fragments are

full components with

unused extended

ports disconnected

Native CORBA client-server ports

to use fragments as well in future

UCM standard (underlying

CORBA, RPC4DDS, other)

ClientB

ClientB

ClientA

ClientA

Ref: DDS_Event and DDS_State Fragments
Graphical Representation From ccm_dds.idl

4

Extended Port View

supplier : DDS_Write

DDS_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

pull_consumer : DDS_Get

push_consumer : DDS_Listen

error_listener : ConnectorStatusListener

pull_consumer_filter

push_consumer_filter

Basic Port View

dds_entity : DDS::DataReader

data_control : DataListenerControl

data_listener : Listener

status : PortStatusListener

data : Reader

error_listener : ConnectorStatusListener

data : Writer

DDS_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

dds_entity : DDS::DataWriter

DDS_Write

DDS_Listen

DDS_Base

DDS_Getfilter_config : ContentFilterSetting

pull_consumer_filter

push_consumer_filter

dds_entity : DDS::DataReader

fresh_data : Getter

status : PortStatusListener

data : Reader

filter_config : ContentFilterSetting

Extended Port View

observable : DDS_Update

DDS_State

Connector
Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

pull_observer : DDS_Get

push_observer : DDS_Listen

error_listener : ConnectorStatusListener

pull_observer_filter

push_observer_filter

passive_observer : DDS_Read

push_state_observer : DDS_StateListen

push_state_observer_filter

passive_observer_filter

Basic Port View

dds_entity : DDS::DataReader

data_control : DataListenerControl

data_listener : Listener

status : PortStatusListener

data : Reader

error_listener : ConnectorStatusListener

data : Updater

DDS_State
Connector

Component

DDS

RTPS

dds_entity : DDS::DataWriter

DDS_Update

DDS_Listen

DDS_Base

DDS_Get

filter_config : ContentFilterSetting

dds_entity : DDS::DataReader

fresh_data : Getter

status : PortStatusListener

data : Reader

filter_config : ContentFilterSetting

domain_id

qos_profile

topic_name

key_fields (unused) pull_observer_filter

push_observer_filter

push_state_observer_filter

passive_observer_filter

dds_entity : DDS::DataReader

data_control : StateListenerControl

data_listener : StateListener

status : PortStatusListener

data : Reader

filter_config : ContentFilterSetting

dds_entity : DDS::DataReader

data : Reader

status : PortStatusListener

filter_config : ContentFilterSetting

DDS_Read

DDS_

StateListen

DDS_State

DDS_Event

connector DDS_Event : DDS_TopicBase {

 mirrorport DDS_Write supplier;

 mirrorport DDS_Get pull_consumer;

 mirrorport DDS_Listen push_consumer;

};

local interface Listener {

 void on_one_data (in T datum, in ReadInfo info);

 void on_many_data (in TSeq data, in ReadInfoSeq infos);

};

porttype DDS_Listen {

 uses Reader data;

 uses DataListenerControl data_control;

 provides Listener data_listener;

 attribute QueryFilter filter

 setraises(NonChangeable);

 uses ContentFilterSetting filter_config;

 uses DDS::DataReader dds_entity;

 provides PortStatusListener status;

};

So, How Do You Build Your Own Connector?

• Define your connector in IDL

– Define types, exceptions and local interfaces (API) plus an IDL templated module

– Then extended port types (aggregations of local interfaces) & your connector(s)

• Create a model of the connector in your chosen 1CBDDS modeling tool

– Currently, UML profiles for CBDDS are offered by Zeligsoft CX for CBDDS (PrismTech)

and the Artisan Studio IDL Profile (Atego)

– Both tools offer IDL generation from a model for most of the IDL 3.5 spec, so much of the

prior IDL definition can be done in a model, as well as D&C CDP/CDD descriptor gen

– Add your connector model to your tool installation for access by app developers

• Installed as a model library for Zeligsoft, and an importable package for Artisan

• Build the source implementation of your connector

– We use the user extensible GIS connector framework in the open source CIAO

implementation of LwCCM, DDS4CCM & AMI4CCM from the DOC Group

– Result is a template based implementation that application developers can instantiate

with a user-defined type (message, interface, etc.)

5

1Component Based DDS (CBDDS) defines an integrated suite of 7 OMG open standards:

LwCCM, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C

Custom GIS Connector Examples
Built and In Service at Northrop Grumman

• Publish Subscribe Attachment Transfer (PSAT) connector

– High performance, general purpose & location independent pub-sub transport of

wideband data with DDS signaling

• Signal Processing Data Model (SPDM) connector

– PSAT extension to support transport of OMG 1VSIPL++ or VSIPL blocks and views

for signal and image processing applications

• Application Instrumentation (AI) connector

– CBDDS PSM simplification of the DDS PSM, providing a very easy to use

encapsulation of in-development OMG AI standard for binary data instrumentation

• Discovery connector

– Directory services access to support dynamic, run-time registration,

discovery/lookup and binding of component service endpoints and topic data

6 1VSIPL = Vector, Signal & Image Processing Library

Component Assembly Diagram
Example Showing Basic and Extended Port Types & Connectors

7

Service (Facet)

Client (Receptacle)

Sync or Async (AMI4CCM)

Basic Port Types Extended Port Types

DDS_Write, DDS_Update

DDS_Listen, DDS_Read,

DDS_StateListen, DDS_Get

PSAT_Write

PSAT_Listen

SPDM PSAT_Base::PSAT_Write

SPDM PSAT_Base::PSAT_Listen Discover (Data or Services)

AI_Save

PSAT Connector

• DDS4CCM DDS extension to support the efficient and high performance transport
of large, wideband data for HPC (high performance computing) applications

• PSAT = Publish Subscribe Attachment Transfer
– Name borrows from the email paradigm of sending an opaque, intact file attached to an email that

describes what the attached file is

• Large/wideband Attached Data (AD) buffer ~= attached file

• User Defined Message (UDM) metadata message ~= email text body

– UDM metadata & IPC event sent via DDS, AD buffer sent separately over a wideband fabric such as
shared memory or Infiniband

– UDM explicitly described in IDL, AD implicitly described by standard “core” UDM message header
parameters that must be included in every PSAT message per connector design

• Design extends the DDS4CCM standard CIAO open source DDS_Event connector
implementation with a new PSAT_Event connector

– A few additional API calls beyond the standard DDS4CCM APIs

8

AD
Buffer

UDM (DDS Metadata/Event)

AD (Wideband Data Attachment)

PSAT Publisher Port PSAT Subscriber Port

Why PSAT and Not Standard DDS?

• DDS messages must be specified by a single IDL struct or union definition

– No means to separately specify metadata vs. data, send them independently, and then
associate them on the receiving side for simultaneous single-callback delivery

• HPC applications such as signal & image processing need low latency, finer grained
control over memory layout and copying for publishers & subscribers

– The DDS standard APIs abstract away sample buffer management & location for ease of use

– Consecutive sent/received sample buffers have no guaranteed relationship to one another in
memory, and are typically copied many times between writer & reader

• RTI Connext Messaging DDS: Three times on same host, four times between hosts

• No ability to send DDS sub-samples in order to specify contiguous sample buffer
layout or support many-to-one aggregation into a common target sample buffer

– No exposed DDS API capability for enhanced sub-sample functionality or scatter/gather

• NGC and RTI did a multi-month “large data” design study and concluded that DDS API
extensions would be required to meet HPC requirements

– Primarily for zero/single copy AD buffer lifecycle management, which adds both unnecessary
complication to DDS, and more potential for abuse of concurrent memory access controls

• Some DDS products work over high speed fabrics like Infiniband, but they
are still IP-based (IPoIB)

9

PSAT Wideband AD Buffer Transport Options

• Configurable transport options include:
– Zero-copy Shared Memory – preferred intra-node option, highest throughput

– Single-Copy Shared Memory – optional lower performance intra-node option, supporting
the ability to mirror possible OFED RDMA data transformations during transport

– OFED (OpenFabrics Enterprise Distribution) compliant wideband fabric

• OFED is an RDMA (Remote Direct Memory Access) API standard for
Linux/Windows (PSAT can sustain 3.1 GBytes/sec over QDR Infiniband)

• Available OFED fabrics include Infiniband, Serial Rapid IO or 10/40 GbE

• Scatter/gather and other in-transport data transformations are possible

– TCP/IP - development/debug only, for VM SDK development when fabric unavailable

– File System - future

– NOTE: Connector APIs seen by business logic classes are the same for all

• Defined as standard GIS local IDL interfaces – full location-independent deployment

• PSAT connector configuration parameters set by two means:
– Some are PSAT connector attributes, settable during the CBDDS deployment planning

phase from an MDA tool (and generated to a D&C deployment plan)

– Most configuration options currently specified in a PSAT config file

• Allows necessary per-connector-fragment settings, which DAnCE supports

• Per generic GIS connector concept, all fragments must share common connector
settings (although a “per port property override” feature is pending in the MDA tools)

10

https://www.openfabrics.org/

SPDM Connector
CBDDS Support for the OMG VSIPL/VSIPL++ Standards

• SPDM = Signal Processing Data Model

• A DDS4CCM connector type built via a minor extension to the PSAT connector

– Uses IDL 3.5 syntax for connector inheritance

– Adds an additional connector attribute to PSAT, and additional standard UDM header info

• Extends the general purpose transport layer PSAT connector

– VSIPL/VSIPL++ knowledgeable, supporting location-independent “View” data model transport

– PSAT remains application layer and data model agnostic – purely a transport layer connector

• Direct support for a high level VSIPL/VSIPL++ data model struct in an extended
PSAT UDM message

– PSAT_Header, an additional SPDM_Header, plus user-defined fields

• Adds a custom optional PSAT reader interceptor to handle complexities involved in
transferring VSIPL/VSIPL++ blocks & views from one component to another

– All data transport is between location independent components, transparent to the application
layer and APIs

• Same OS process, different OS processes on same compute node, different compute
nodes – all deployment planning time decisions w/no code impact

• Enables coarse-grained HPEC multi-node parallelism at component level, supplementing
fine-grained intra-node parallelism covered by VSIPL and VSIPL++

11

Ref: PSAT_Event and SPDM_Event Fragments
Graphical Representation From ccm_psat.idl & ccm_spdm.idl

12

SPDM_Event

PSAT_Event

Basic Port View

dds_entity : DDS::DataReader

listener_control : PSAT_Listener_Control

listener : PSAT_Listener

status : PSAT_Reader_Status_Listener

attachment_control : PSAT_Attachment_Control

error_listener : ConnectorStatusListener

data : PSAT_Writer

PSAT_Event
Connector

Component

dds_entity : DDS::DataWriter PSAT_Write

PSAT_Listen

DDS_Base

filter_config : ContentFilterSetting

DDS

RTPS

Wideband

Fabric

(OFED,

SM, IP)

status : PSAT_Writer_Status_Listener

domain_id

qos_profile

topic_name

key_fields (unused) consumer_filter

psat_config

max_sample_size

Basic Port View

dds_entity : DDS::DataReader

listener_control : PSAT_Listener_Control

listener : PSAT_Listener

status : PSAT_Reader_Status_Listener

attachment_control : PSAT_Attachment_Control

error_listener : ConnectorStatusListener

data : PSAT_Writer

SPDM_Event

Connector
Component

dds_entity : DDS::DataWriter PSAT_Write

PSAT_Listen

DDS_Base

filter_config : ContentFilterSetting

DDS

RTPS

Wideband

Fabric

(OFED,

SM, IP)

status : PSAT_Writer_Status_Listener

domain_id

qos_profile

topic_name

key_fields (unused) consumer_filter

psat_config

max_sample_size

parent_data_info

supplier : PSAT_Write

PSAT_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

consumer : PSAT_Listen

error_listener : ConnectorStatusListener

consumer_filter

psat_config

Extended Port View

Wideband

Fabric

(OFED,

SM, IP)

max_sample_size

supplier : PSAT_Write

SPDM_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

consumer : PSAT_Listen

error_listener : ConnectorStatusListener

consumer_filter

psat_config

Extended Port View

Wideband

Fabric

(OFED,

SM, IP)

max_sample_size

parent_data_info

Application Instrumentation (AI) Connector

• Provides a very easy to use capability to add run-
time DRE binary data instrumentation to
components

– Supplements distributed text-based logging typically used
for DRE debug

• Application Instrumentation (AI) is an in-
development OMG draft standard

– Under the C4I DTF

• The AI connector is basically a CBDDS PSM
simplification of the DDS PSM in the draft spec

• The AI connector, in conjunction with the LwCCM
container and DDS4CCM connector framework,
encapsulates & implements Instrumentation
Service functionality

13

Ref: OMG Document c4i/2013-02-01
DDS PIM to PSM Mapping

AI Connector Definition and Use

14

Component AI Connector

bind()

observe()

unbind()

loop

Basic CBDDS AI API

Extended Port View

AI_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

Instrumenter : AI_Save

error_listener : ConnectorStatusListener

Three DDS Topics:

• ObservableSchema

• RemoteServiceRequest

• RemoteServiceResponse

// AI_Event – some IDL details removed for clarity

local interface AI_Control {

 CCM_AI::ReturnCode_t bind(

 in long long objStruct);

 CCM_AI::ReturnCode_t observe();

 CCM_AI::ReturnCode_t unbind();

};

porttype AI_Save {

 uses Typed::AI_Control data;

 uses DDS::DataWriter dds_entity;

};

connector AI_Event : CCM_DDS::DDS_TopicBase {

 mirrorport Typed::AI_Save instrumenter;

};

• API Allows User To:
• Bind an instance of the DDS message struct that types the AI connector

• Take observation samples as desired (from stack, heap, executor…)

• Unbind the struct before it goes out of scope (e.g., to bind another
message struct instance)

Portability Interface:

Single port (see left)

Interoperability Interface:

Publishes ObservableSchema

DDS message type that

defines the connector, and

interfaces with Monitoring

Application via control topics

(for remote control of AI)

• Easy to Use:
• Add an AI port to a component in your

MDA tool, including message struct type
bound to it

• Instantiate component & connector, and
connect in an assembly

• Use MDA tool to add instrumentation
fields of interest to message

• Set connector properties in deployment
planning tool (use default DDS
domain_id) – one time setting

• Gen IDL & boilerplate executor, add API
calls to appropriate callback stubs, build,
deploy, view/control via Monitoring App
at run-time

• AI Connector Definition:

Discovery Connector

• Real-Time SOA Data & Service directory services access

– Dynamic system behavior via run-time data and service registration, lookup & binding

• Common connector design typed for either data or service discovery (per port)

– Data registry implemented as a keyed DDS topic

• Enables registration and lookup of other topics (DDS built-in-topic extensions)

• Topic metacard defined as an IDL subset of DDMS (DoD Discovery Metacard
Specification) XML schema

– Service Discovery registry implemented as a keyed DDS topic

• Service spec metacard enables service endpoint registration & lookup

– Both topics pre-defined by connector, with RELIABLE, KEEP_ALL, TRANSIENT_LOCAL QoS

• Discovery connector reuses mix of basic ports from the DDS_State connector

– Encapsulates both subscribe and query, for lookup/discovery, and publish, for metacard
updates & adds

• Supplemented by supporting DAnCE “interceptors”

– DAnCE is an open source implementation of the OMG D&C spec execution model

– Interceptors initialize DDS metacard instances during launch from CDP deployment plan tags

– Service endpoint lookup during progressive deployment to establish connections with service
components already deployed in a prior launch

• Distributed (no single point of failure) alternative to the CORBA Naming Service

15

Data & Service Discovery
Initialization & Use Example

• At startup, DAnCE Registration Interceptors populate the initial instance messages in common
ServiceDiscovery & DataDiscovery topics

– Example: Service A is registered on the “SNA::ServiceDiscovery” topic on domain ID 17

– Example: Topic B is registered on the “SNA::DataDiscovery” topic on domain ID 18

• Registrar components (Example Comp 1 & 3) have the option of defining Discovery connector ports
& using them any time during system operation to update the instance messages originally created
by the interceptors at startup

– If they have no value to add or additional fields to fill in, these ports are not required

– Discovery port type offers bidirectional read/write access to its underlying topic types (service or data discovery topic)

• Discoverer components (Example Comp 2 & 4) must use their Discovery ports after startup to lookup
the service port or data topic on the other end to connect to, and then make API calls to connect
()

16

Publish
Registrar
Comp 1

Service
Registrar
Comp 3

Subscribe
Discoverer

Comp 2

Client
Discoverer

Comp 4

DataDiscovery Topic

ServiceDiscovery Topic

Connection made by

Comp 4 as a result of

discovering Service A

via its Discovery port

Subscription to topic made by Comp 2 as a result

of discovering Topic B via its Discovery port

Optional Port: Only needed if

the component is going to

update the service spec

Optional Port: Only needed if

the component is going to

update the metacard
A

B

Required

Discovery

port

Required

Discovery

port

Service
Registration
Interceptor

Data
Registration
Interceptor

Used to Init Discovery Topic Instances

Service
Lookup

Interceptor

Used for Service Lookup During

Launch for Progressive Deployment = Connection

made after

startup

CORBA Naming Service Alternative

DAnCE
D&C Deployment Framework

Ref: AI_Event and Discovery_State Fragments
Graphical Representation From ccm_ai.idl & ccm_discovery.idl

17

Discovery_State

AI_Event

Extended Port View

AI_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

Instrumenter : AI_Save

error_listener : ConnectorStatusListener

Three DDS Topics:

• ObservableSchema

• RemoteServiceRequest

• RemoteServiceResponse

Basic Port View

error_listener : ConnectorStatusListener

data : AI_Control

AI_Event
Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

dds_entity : DDS::DataWriter

AI_Save

DDS_Base
Three DDS Topics:

• ObservableSchema

• RemoteServiceRequest

• RemoteServiceResponse

Extended Port View

Discovery_
State

Connector
Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

discovery : Discover

error_listener : ConnectorStatusListener

Publish & Subscribe to

One of Two DDS Topics:

• DataDiscovery

• ServiceDiscovery

discovery_filter

dds_entity : DDS::DataReader

data : ReadQuery

status : PortStatusListener

filter_config : ContentFilterSetting

Basic Port View

error_listener : ConnectorStatusListener

update_data : Updater

Discovery_
State

Connector

Component

domain_id

qos_profile

topic_name

key_fields (unused)

DDS

RTPS

dds_update_entity : DDS::DataWriter

Discover

DDS_Base

discovery_filter

Publish & Subscribe to

One of Two DDS Topics:

• DataDiscovery

• ServiceDiscovery

Connectors Can Encapsulate Just About Anything
Easy Component Framework Integration, Well-Defined Interfaces

18

• TCP or UDP sockets

• Custom Shared Memory interfaces

• Serial ports

• Widely used legacy buses or device drivers

• REST

• SOAP

• ZeroMQ

• Many, many more…

• Proprietary middleware (transition)

• JMS

• MPI

• D-Bus

Implicit

Component

Interfaces

Useful for Building Bridge/Adapter Components With Ports that Adapt DDS or CORBA to Non-Native, External Middleware/Interfaces:

Backup Slides

Abstract

In addition to defining normative connector types for integration of DDS middleware into a CCM component framework,

the OMG DDS for Lightweight CCM (DDS4CCM) standard combined with recent CCM GIS improvements offers

domain users the ability to define their own new or extended connector types. User-defined connectors can

encapsulate any middleware or transport layer alternative to DDS, either extending DDS to enable enhanced

functionality, or to replace it entirely with something else. By leveraging a generic, extensible GIS connector

development framework, such as that provided by the DOC Group’s CIAO product, users can build their own custom

connector types to target a variety of domain specific applications. Moreover, extensible connector capabilities

incorporated into Component Based DDS (CBDDS) UML profiles available from commercial MDA tool vendors Atego

and Zeligsoft, enable users to build their own connector model libraries, making the use of custom connector types

even easier.

This presentation will discuss four connector types that have been developed for Northrop Grumman’s Teton Scalable

Node Architecture (SNA) Platform, which is built upon a CBDDS application framework foundation. These custom

connectors all extend the functionality of the normative DDS4CCM connectors. The first two connector types include a

Publish Subscribe Attachment Transfer (PSAT) connector, for high-performance, zero/single copy shared memory or

OpenFabrics Enterprise Distribution (OFED) based RDMA wideband data transport, as well a Signal Processing Data

Model (SPDM) connector that extends PSAT to support the location independent transport of OMG VSIPL or VSIPL++

standard “views” for high-performance, component-based signal and image processing applications. The third

connector type is a Discovery connector, which offers a DDS-only service registration and lookup, directory services

alternative to the CORBA Naming Service for both D&C deployment framework “progressive” deployment as well as

application-level DRE service discovery. The fourth connector type is an encapsulation of the still-in-development OMG

Application Instrumentation (AI) standard for DDS-based binary data instrumentation, to supplement distributed, text-

based logging.

21

AMI4CCM Deployment
Connector Fragment & Connections

Client

Component

Server

Component myBarFacet :

AEcho_obj

myFooFacet :

Echo_obj

myFooRecept :

Echo_obj

myBarRecept :

AEcho_obj

ClientProcess ServerProcess

Client

Component

Server

Component

ServerProcess

AMI4CCM

AEcho_obj

Connector

myBarFacet :

AEcho_obj

myFooFacet :

Echo_obj
myFooRecept :

Echo_obj

sendc_myBarRecept :

AMI4CCM_AEcho_obj

ami4ccm_port_

ami4ccm_provides :

AMI4CCM_AEcho_obj

ami4ccm_port_

ami4ccm_uses :

AEcho_obj

Logical View
• Connections between all client and server ports look the same on

a component diagram in the design tool, regardless of whether

client ports are configured to be synchronous or asynchronous

Concrete Deployment View
• Shows AMI4CCM connector fragment component actually deployed to encapsulate CORBA AMI code

• Client synchronous calls actually made locally, and routed through the AMI4CCM connector as a pass-through

• Enables future alternative technology connector implementations of both the sync & async calls from the client

• Shows implicitly created async client port and interface added by the IDL compiler to handle AMI sendc_* versions of calls

• Actual number of <connection> entries in CDP file between the AEcho_obj client and server ports is THREE (2 local, 1

normal), despite only 1 shown in Logical View

• UCM request-reply equivalent expected to add fragments on both ends (using either CORBA AMI or RPC4DDS)

Checkbox on this

client port in tool set

to “Asynchronous”

myBarRecept :

AEcho_obj

ClientProcess

ami4ccm_port_ami4ccm_

sync_provides : AEcho_obj

22

