THALES

@ DDS for LWCCM
March 2013

virginie.watine@thalesgroup.com

Component Orientation ©

—

March 2013

Component Model =

A generic packaging format

m Deployment and configuration
external to the application

Ports to describe

m Provided & required "services"

o Ininitial CCM: facets & receptacles
event sinks & sources

o Other interactions useful for RTE systems
=>» Explicit dependencies

Separation of concerns between business logic (components) and
"technical" logic (containers)
m Containers to be provided by the framework and configured

o Providing technical support adapted to the domain
o Maediators with the underlying platform

=>» Explicit dependencies
All dependencies explicit = reuse & fast integration-l- HALES

Busmess
Loglc

- Com ponent =
Provided Required
Services Services
[]

Technical Y% Container
Logic

Infrastructure

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

DDS4CCM @

—

March 2013

©

<<This RFP solicits submissions for an extension of the
current LwCCM to include data distribution using DDS>>

Specification in two parts:

Definition of a Generic Interaction Support (GIS)
m Results in Extended Ports and Connectors

Application of the GIS to DDS
m Results in DDS Extended Ports and Connectors

Rationale for this two-parts proposal

Interaction support is the key enabler for component definition
m Many interaction kinds are relevant - Notably, but not only, DDS

GIS to allow further extensions with no additional changes
GIS to favour consistency of the new ports definition

THALES

said anad

onejus

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Outline ®©

Extended Ports and Connectors

Generic support for new component interaction

Application to DDS

DDS/DCPS extended ports and connectors
DDS/DLRL extended ports and connectors

Conclusion

March 2013

THALES

®

S37vH.L adnolb np 919udolid €| Juos nua

_ DDS4CCM / GIS: Extended Ports and Connectors &

Generic support for new component interactions

Connector = conceptual interaction entity between components
m Actual connection may be explicit or implicit (e.g., via DDS)
A Connector is made of several fragments:

m Each fragment = part of the Connector implementation co-located with a
component

21d ana)d

uoneuas

—

Extended Port = how the Component interact with its Connector fragmentg

m Is made of 0..n provided facets ("provides") combined with 0..n required
receptacles ("uses")

extended ports

S37vH.L adnolb np a191doud | 1uos nu

From conceptual view... 0_1
Component Component

: —_ O0—

i “" 0.00‘

v —{7 connector
o o <€
]..t0 realisation Component Fragment / > Fragment Ij— Component
3 specific
g " { u p

... THALES

collocated

[¢)]

Extended Port Declaration (1/2) ©

—

New keywords introduced to:
Define a new port (porttype)
Declare an port for a component (port)

Declare an inverse port (mirrorport)

m An inverse port is the “mirror” of an extended port
All uses translated to provides and vice-versa

m Inverse ports are very useful at least for connectors

Component|f | Component

March 2013

Extended port Inverse port
(port) (mirrorport)

THALES

[¢]

21d ana)d

nejuas

19 Uo

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Extended Port Declaration (2/2) ©

—

March 2013

Example:

/'l interfaces
I nterface Pusher {
voi d push (in TheDataType data);
}
I nterface PushControl {
voi d suspend ();
void resune();
readonly attribute |long nb_waiting;

i

/] port type definition
porttype Controll edPusher {

provi des Pusher pusher;
uses PushContr ol control ;
¥

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

/| Conponent declaration with a port
Conponent C {
port Controll edPusher the port;

};
THALES

Extended IDL3 (IDL3+) to IDL ®

—

Extended IDL3 can be easily translated in plain IDL3

With simple transformation rules

m Example:
Conponent C {
provi des Pusher t he _port pusher;
uses PushContr ol t he port _control;
}

Extended IDL3 (with extended ports)

\ 4

IDL3 Equivalent (after transformation)

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

y \ 4

IDL Local IDL Equivalent (IDL2)
CIF iIncluding expanded ports operations

THALES

March 2013

Connector Declaration ©

—

March 2013

©

New keyword to declare a Connector

Connector declaration (connector) similar a component
declaration

m Example

connector cnx {
m rrorport Controll edPusher control |l ed push;
provi des Pusher raw_pusher;

};

This declaration:
Is not translated in the plain IDL3 (does not affect the components)
Is used to provide type information at the assembly level

THALES

21d ana)d

onejuas

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

D&C View of Connectors (©

—

March 2013

[y
o

Connectors == Composite components
Connector fragments = plain basic components

At assembly level:
Connectors are seen as connection entities between components
Fragments do not appear
Only connections between extended ports are described

At deployment level:

Connectors are flattened in fragments (exactly as composite
components are substituted by their included components)

Fragments are part of the CDP (shall be generated at planning
phase)

Basic connections (facet to receptacle) are described
THALES

21d ana)d

nejuas

19 Uo

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Parameterization (©

—

All the new constructs may be parameterized

Parameterization very useful to capture generic interaction
semantics

March 2013

[N
[N

m Example: a control | edPusher valid for any data type and not only

TheDat aType

Parameterization placed at module level (template modules)

Modules are the only grouping constructs in IDL

_@:7 Need to match
R o L G

.

-@}

Always needed to group in the same template scope port types and
connectors (as they need to result in matching instantiated interfaces)

Component

No need for naming conventions for instantiated types

m (in line with other IDL practices)

THALES

21d ana)d

onejuas

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

Parameterization: What can be Templated? ©

—

March 2013

Modules

With the following restrictions

m A template module cannot embed a template sub-module
o Rationale: would result in in over-complication

m A template module cannot be re-opened
Means that all embedded constructs are de facto templates

m With the consequence that they are in the same template space
o Embedded modules can provide structuring if needed

Only modules

Template modules are required for GIS

m Interfaces “used” or “provided” through extended ports are required to
be the same as the ones “provided” or “used” through connectors

Template modules are easier to add to existing IDL definition
m Looks as an extension rather than as a revolution

Template modules offer all the needed flexibility
m All embedded constructs are de facto parameterised

THALES

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Templates: Formal Parameters (©

—

One to many formal parameters

Type of formal parameters can be:
Any type
m introduced by t ypenane

Some more restricted:
m | nterface,val uetype, struct, uni on, excepti on, enum sequence

Const primitive types

m const {[unsi gned]short, [unsi gned]l ong, [unsi gned] | ong | ong,
string...}
Purpose is to allow passing any constant

sequence<T>

m with T being a previous formal parameter

The concrete parameter will have to be a previously instantiated sequence<Foo>
(assuming that instantiation is created for T = F00)

21d ana)d

uoneuas

—

S37vH.L 9dnolb np 919udold €| Juos nuau

March 2013

(1) THALES

Templates: Usage (©

—

March 2013

Two steps:
Definition of the template =»parameterized types
Instantiation with concrete parameters =»concrete types

Instantiation rules

Explicit instantiation required for the template module
m Explicit instantiation required to allocate a name

m No on-the-fly instantiation, that would result in an anonymous type
o rationale: compliance with current IDL strategy regarding template

instantiations (anonymous types proven difficult to map in some languages)
Explicit instantiation of the module =»instantiation of the
embedded/referenced constructs

m The embedding structure (module instantiation) provides a namespace
that isolates the implied instantiations (no other name required)
o Embedded constructs
o Referenced template module (see below)

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

THALES

Templates: Syntax as Simple as Possible (1/2) ©

¢ Template definition

March 2013

(5

module template-name < {parameter-type formal-parameter}+ > {...}
@ parameter-type =

m typename

m interface, valuetype, struct, union, exception, enum, sequence

m const any-primitive-type

B sequence<a-previous-formal-parameter>

W Example
m nodul e MyTenpl at eModul e<t ypenanme T> {...}

Template instantiation
module template-name < {parameter}+ > instantiation-name;
W Example
m nodul e MyTenpl at eModul e<Foo> MyFooMod,
W Rationale:

m moduledef is already used in the IFR definition (ModuleDef)
m typedef would be confusing (it does not provide a type)

m No new keyword THALES

21d ana)d

olneluss

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

—

March 2013

Templates: Syntax as Simple as Possible (2/2) ©

Template reference

It is sometimes needed to reference an externally defined template

module inside another one and to give it a name

m Purpose is to reuse definitions

m Constraint: the formal parameters of the referenced template module
have to be a subset of the formal parameters of the referencing one

Instantiation will be performed when the referencing template is

Instantiated

Syntax

alias template-name < {formal-parameter}+ > alias-name;
m alias-name can be identical to template-name
Example:

m nodul e MyTenpModul e <typenane T1> {...}

m nodul e MySecondTenphModul e <typenane T1, typenane T2>{
al i as MyTenpModul e<T1> MyTenphMbdul e;

1 THALES

21d ana)d

olneluss

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

GIS Conclusion ©

—

March 2013

[N
~

Generic Interaction Support provides great flexibility
By decoupling the programming contract from the actual interaction

By allowing definition of new interactions without further changes in
CCM and D&C

GIS may support sophisticated interactions

As programming contracts, Extended Ports may combine freely
basic facets (caller) and receptacles (callee)

As interaction artefacts, Connector Fragments are restriction-free

It reuses as much as possible from CCM and D&C
Extended Ports benefit from the CIF unchanged
Connectors are plain composite components wrt D&C

Integrated in CCM since v3.2

(Template modules could be used for many other purposes)
THALES

21d ana)d

onejuas

9JUod Uos 1B u

S37vH.L adnolb np a191doud | 1uos nu

Outline ®©

Extended Ports and Connectors
Generic support for new component interaction

Application to DDS
DDS/DCPS extended ports and connectors

DDS/DLRL extended ports and connectors

Conclusion

March 2013

THALES

S37vH.L adnolb np 919udolid €| Juos nua

Rationale for DDS Ports (©

—

March 2013

Apply Separation of Concerns also to DDS

Keep the business code apart from the "technical" code

m For DDS, means externalising the creation and configuration of the
DDS entities

Integrate DDS configuration in the general D&C scheme

Simplify the use of DDS

Easy “out of the box” DDS operation
m No entity creation / configuration burden
m Simpler API

Easy and secured QoS setting

What should be avoided

Performance degradation

Usefulness degradation
THALES

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

How Designing DDS Ports? ©

—

March 2013

Identify most commonly used DDS patterns

A DDS pattern =

A set of roles
Their related DDS entities and how they are to be used
Their related QoS settings (QoS profiles)

Examples of patterns:

m State (Observer/ Observable)

m Event (Supplier / Consumer)
Continuous Data (Supplier / Consumer)
Alarm (Activator / Handler)

WatchDog (WatchDog / Monitor)
Consensus (Participant)
LoadBalancing (LBServer / LBClient)

THALES

21d ana)d

onejuas

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

Patterns - Ports, Connectors,Configuration, etc. ©

—

March 2013

®

One Role should be supported via (only) one Extended Port

But no need for a different port type per role

m One port = one programming contract

Usually linked to one Topic (parameter), but several Topics could be handled
m Variability points:

Read or write

One or Many data instances......

Connector Fragments correspond to Roles:

Hide related DDS entities and implementation logics (ex: take vs.
read)

Configured by means of an integrated consistent QoS Profile
(expressed in XML)

All the roles of a given pattern can be gathered in a Connector
m Does NOT imply physical connection between the components

m Helps logistics THALES

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Connector =/= Physical Connection &

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

Component
—)
component - \
component e Classical
s DDS
component ce Participant)
= m collocated
A
Component)
Component
Component |'|
DDS Component
Component |'|
- 2 “H|component
g Component |'|
=

22

— e e = Y THALES

DDS Normative Ports and Connectors (&

—

March 2013

N
w

Following those principles, a very huge set of ports could be
defined

DDS4CCM standardises:

A set of DDS/DCPS Ports
m Covering all sensible programming contracts involving one Topic

Two very typical DDS/DCPS patterns
m State Transfer & Event Transfer

Optionally, a composition rule to define DDS/DLRL ports and
connectors

Nothing prevents to create other DDS ports and/or connectors
in order to implement other DDS use patterns
In particular, by reusing some standardised interfaces

THALES

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

DDS/DCPS Port IDL Definition - Rules (&

—

March 2013

DDS ports made of several 'basic’ ports

One basic port by 'area of functionality' X 'interaction direction’

m Areas of functionality:
data access
status access
DDS entity access

m Interaction direction = whether the component invokes (uses)
operations on the fragment or provides a callback to the fragment

Parameters as simple as possible:
Simplified ReadInfo to accompany data values
Use of port attributes to capture recurrent operation settings
Exceptions to report errors

THALES

21d ana)d

onejuas

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

March 2013

N
[62]

DDS-DCPS Ports Parameterization (©

DDS-DCPS ports and connectors meant to be parameterized
by one data type (the one of the related Topic)

All are grouped in one module, with a template sub-module for
the part specific to the data type:

nodul e CCM DDS {
/] declarations that are not T specific
nodul e Typed <typenane T, sequence<T> Tseq> {
/] declarations that are T specific
/| sequence<T> to be provided at instantiation

}
}
nodul e CCM DDS: : Typed<Foo, FooSeqg> FooPorts;

Note : sequence<T> provided by the application so as not to create
a new type

THALES

S37vH.L adnolb np 919udolid €| Juos nua

DDS/DCPS Basic Port Interfaces (©

—

March 2013

N
(o))

Data Access — Writer Side
Writer when the instance lifecycle is not a concern
Updater when the instance lifecycle is a concern

Data Access — Reader Side

Reader to just read the data

Getter to wait for fresh data

Listener to be notified of a fresh value of an instance
whose lifecycle is not a concern

StateListener to be notified of instance state changes

Other interfaces
InstanceHandleManager root for Writer and Updater
DataListenerControl / StateListenerControl
PortStatusListener / ConnectorStatusListener THALES

21d ana)d

nejuas

19 Uo

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

DDS/DCPS Extended Ports (1/2) ©

—

March 2013

Writer Side

porttype DDS Wite {
uses Witer
uses DDS: : DataWiter
}

porttype DDS Update {
uses Updat er
uses DDS: : DataWiter

i

Reader Side

porttype DDS Read ({
uses Reader
uses DDS: : Dat aReader
provi des Port St at usLi st ener
}s
porttype DDS Get {
uses Reader
uses Cetter
uses DDS: : Dat aReader
provi des Port St at usLi st ener

i

dat a;
dds_entity;

dat a;
dds_entity;

dat a;
dds_entity;
st at us;

dat a;
fresh_dat a;
dds_entity;
st at us;

THALES

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

DDS/DCPS Extended Ports (2/2) ©

—

March 2013

Reader Side - ctn’d

porttype DDS Listen {
uses Reader dat a;
uses Dat aLi st ener Contr ol data_control ;
provi des Listener data_| i stener;
uses DDS: : Dat aReader dds _entity;
provi des Port St at usLi st ener st at us;
b

porttype DDS Statelisten {
uses Reader dat a;
uses St ateli st ener Contr ol data_control;
provi des St at elLi st ener data | i stener;
uses DDS: : Dat aReader dds _entity;
provi des Port St at usLi st ener st at us;
b

Note that all the reader side extended ports comprise a Reader
to set the read context and perform the init phase

THALES

21d ana)d

onejuas

v u

9JU0d uos

S37vH.L adnolb np a191doud | 1uos nu

DDS/DCPS Patterns — Connectors (&

—

State Connector
connector DDS State : DDS Topi cBase {

m rrorport DDS Update obser vabl e;

m rrorport DDS Read passi ve_observer;

m rrorport DDS GCet pul | _observer;
mrrorport DDS Listen push_observer;

m rrorport DDS Statelisten push_st at e_observer;
}

Event Connector
connector DDS Event : DDS Topi cBase {

mrrorport DDS Wite supplier;
mrrorport DDS Cet pul | _consuner;
mrrorport DDS Listen push_consuner;
b

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

March 2013

THALES

DDS/DLRL Support ©

—

March 2013

Same objectives...
Simplify programming
m No entity creation / configuration burden
m Simpler API

Easy and secured QoS setting, in the general D&C scheme

...But a different realisation

DLRL offers plain object manipulation that interfaces under the
scene with DCPS operations - very simple

DLRL supporting entities to be created by the Connector fragment
m Object Homes and Cache

All topics used by a DLRL Cache are to be managed consistently
m To be grouped in a single DDS/DLRL Extended Port

A fixed set of DLRL ports and connectors cannot be designed
m Instead basic building blocks and a composition rule
THALES

21d ana)d

onejuas

Slau

9JU0d uo

S37vH.L adnolb np a191doud | 1uos nu

DDS/DLRL Ports and Connectors (1/2) ©

—

March 2013

®

DLRL Extended Port

Should give access to all related objects

Comprises:
m A receptacle for each ObjectHome

m Another receptacle for Cache functional operations

|.e, excluding all the operations that are related to configuration (thus will be
for the only use of the Connector implementation)

DLRL Connector

Natural support to gather all the DLRL extended ports related to

the same set of topics in order to master their configuration

system-wide

Could provide as many mirror ports as there are DLRL participants

to this set of topics

m Nothing prevents several DLRL participants to share the same object
model, thus the same DLRL port THALES

21d ana)d

onejuas

JUO0D UOS 18 U

S37vH.L adnolb np 919udolid €| Juos nua

DDS/DLRL Ports and Connectors (2/2) ©

—

March 2013

Example

A DDS/DLRL Extended Port
porttype MyDIirl Port 1 {
uses DDS CCM : CacheOperati on cache;

uses FooHone foo _hone;// entry point for Foo objects
uses Bar Hone bar _hone// entry point for Bar objects
}s

m DDS CCM::CacheOperation is a subset of DDS::Cache
m FooHome and BarHome are provided by the DLRL tooling

A DDS/DLRL Connector
connector MyDlrl Connector : DDS CCM DDS Base {
mrrorport MyDirlPort_1 pl;
mrrorport MyDirl Port_2 p2;
mrrorport MyDirl Port_3 p3;
b
m Inherits from DDS_Base to be given a ConnectorStatusListener and to

set domain id and QoS profile THALES

S37vH.L adnolb np 9191dold €| JU0S NUBIUOD UOS 18 uoieluasald ana)d

Outline ®©

—

Extended Ports and Connectors
Generic support for new component interaction

Application to DDS

DDS/DCPS extended ports and connectors
DDS/DLRL extended ports and connectors

Conclusion

© THALES

March 2013

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

Conclusion ®

—

March 2013

DDS4CCM specification formally published
http://www.omgq.org/spec/CORBA/3.3
http://www.omgq.org/spec/dds4ccm/1.1

DDS4CCM implemented
By Thales (Cardamom & MyCCM)
By RemedyIT in the scope of CIAO / Dance

Simple DDS ports added to CCM - Extension possible

GIS fully generic and root for a CCM revival
Moved to CCM (now in CORBA specification / part 3 — chapter 7)

In the process of being used for other CCM ports & connectors
m AMI (Asynchronous Machine Invocation), Events...

Note: will allow CCM w/o CORBA (aka UCM)
m e.g. by implementing those connectors on top of DDST HALES

21d ana)d

onejuas

v u

U0 UOS

S37vH.L adnolb np 919udolid €| Juos nua

THALES

® Thank you for your attention
Questions ?

