
Advantages of a

Component Based DDS

Application Framework

March 18, 2013

Mark Hayman
Consulting Systems Architect

Northrop Grumman Corporation

OMG Component Information Day

The Teton Project
NGES’ Modular Open Systems Approach (MOSA) Initiative

• Teton Mission Statement

– Primary: Provide processes, tools, and open architecture frameworks that enable

faster and lower cost development of, and upgrades to, securable embedded

processing subsystems, thereby reducing our customers’ acquisition and total

ownership costs while enabling adaptability and interoperability with existing and

emerging open systems

– Auxiliary: Leverage Mainstream Market Driven (MMD) hardware and software

technologies to the maximum extent, and apply open standards wherever possible

• The NGES Teton Project OA initiative started in 2007

– Baltimore-based Northrop Grumman Electronic Systems (NGES) is one of the 4

Northrop Grumman Corp. business sectors (NGAS, NGES, NGIS, NGTS)

– Teton Project processes, tools and frameworks, including its primary OT Scalable

Node Architecture (SNA) Platform, continue to be applied across the sector

2

3

Teton’s Five Guiding Architectural Tenets

1) OA – Open Architecture
– More specifically, the U.S. DoD’s MOSA (Modular Open Systems Approach) initiative

– Charter tenet for The Teton Project

2) MDA – Model Driven Architecture
– Increasing customer interest and importance

– Higher productivity through tool-based automation and modeling

3) CBA – Component Based Architecture
– Associated industry terms include CBD (Component Based Development) and CBSE

(Component Based Software Engineering)

– Emerging, advanced architecture/design methodology within software community

– Offers modularity and great potential for software reuse for cost/schedule improvements

4) SOA – Service Oriented Architecture
– Popular U.S. DoD and IT architecture pattern

5) EDA – Event Driven Architecture
– Important real-time architecture pattern associated with DOA (Data Oriented Architecture)

– Complementary to SOA, EDA primarily defines a programming model

The Teton “String of Pearls” – Driving Architecture Quality Attributes

MDA

SOA Extensible

Reusable

Plug and Play

Distributed

Net-Centric

EDA

Dynamic Performant

Scalable

Interoperable Secure

Component
Based (CBA)

Portable MOSA/OA
Modular

Location
Independent

C
la

s
s

Component
Type

Latency
Range

Architecture Environment/Description
Technology

Type

1 Hardware Up to 10s of

microseconds

Hardware architecture populated with FPGAs, uControllers, gate arrays, discretes. Hardware

2 Embedded

Software

10s of

microseconds

up to

milliseconds

Distributed, real-time & embedded (DRE) subsystem level architecture. A set of

computers interconnected on a local network plus a backplane or very high-speed

communications fabric that efficiently supports high-throughput, low-latency messaging

and bulk data transfer. Example: a sensor or communications subsystem.

Software

Operational

Technology

(OT)

Component

Based DDS

(CBDDS)

3 Net-Centric

Single-Site

LAN

Software

Milliseconds up

to 100s of

milliseconds

Net-centric, system level architecture. A set of computers interconnected on a high-

speed IP-based network fabric that supports broadcast & multicast network protocols

between hosts. Example: a single ship, ground station, operations center, or airplane

based system.

4 Net-Centric

Multi-Site

WAN

Software

100s of

milliseconds up

to seconds &

beyond

Net-centric, system-of-systems (SoS) level architecture. A set of computers at the

“edge” of a Class 3 system interconnected over typically lower-bandwidth

communications links and/or network links that do not necessarily support IP-based,

broadcast or multicast network protocols (assume unicast only). Example: GIG, Internet

connected systems.

Software

Information

Technology

(IT)
4

Class 1 Class 2 Class 3 Class 4
Up to 10s of microseconds 10s of microseconds

up to milliseconds

Milliseconds up to 100s

of milliseconds

100s of milliseconds up

to seconds & beyond

4

Sub-System
(LAN + Fabric)

System

Platform
(LAN)

System of

Systems
(WAN)

Hardware

Components

General System Architecture Classes
A Perspective From the Northrop Grumman Teton Project

Reliable, High Bandwidth,

Low Latency, High Performance,

Lower Scalability, Real-Time

Intermittent, Lower Bandwidth,

Higher Latency, Lower Performance,

High Scalability, Non-Real-Time, Fast

Time-To-Market Valued

Environmental features and driving architecture quality

attributes vary across the architecture classes

Primary Focus Area - CBDDS

Teton’s OT Solution: The SNA Platform
Run-Time Core Application Framework and a Comprehensive SDK

• SNA Core

– Run-time Environment comprised of COTS, FOSS & custom OA extension

software service executables and API Libs

– Installable on a target system to support run-time execution of SNA components

• SNA SDK (Software Development Kit)

– COTS, FOSS, custom source extensions, MDA & script tools used to support the

design, development, test, integration and deployment of components & solutions

– Guidance, reference documentation & code examples for developers

– Installable on a development system, in addition to the SNA Core, to support

software development using the SNA Platform

5

SNA

SDK

Tools
Development, Debug, Deployment,

FOSS/COTS, Test/Reference Apps

Documentation
Design & Architecture

Guidance, Example Source

Run-Time Environment
Core Control/Data Services &

API Libs, FOSS/COTS

SNA

Core
+ SNA

Platform =

The SNA Core & SDK are Currently Released as a VMware Linux Virtual Machine Image

• Develop distributed, real-time & embedded (DRE) OT software systems for general purpose and high performance
embedded computing (HPEC) applications right on your Windows or Linux desktop – no special hardware required

• A simple change in your deployment plan will deploy your design to one or more desired target machines

Analogous to JRE for Java SE Analogous to JDK for Java SE

Component Based DDS (CBDDS)
SNA’s Foundational Software Framework Technology

• Our SNA Platform is built upon a CBDDS application framework

– CBDDS is a comprehensive, integrated suite of 7 OMG open standards

– Includes LwCCM, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C - today

• CBDDS address all five architectural tenets (OA/CBA/MDA/SOA/EDA)

• DDS by itself only fully addresses two of our driving tenets (OA/EDA)

– Future OMG RPC4DDS spec anticipated to add SOA support

– New CBDDS MDA tooling can help DDS-only users as well

6

• The 5 Guiding Architectural Tenets for
Teton and SNA are:

• OA Open Architecture (MOSA)
• MDA Model Driven Architecture
• CBA Component Based Architecture
• SOA Service Oriented Architecture
• EDA Event Driven Architecture (DOA)

SNA Core Service Open Standard Governance

System Management

(Application Container)

CCM (CORBA Component Model),

D&C (Deployment & Configuration)

OMG

Service/Client Messaging CCM, AMI4CCM OMG

Pub/Sub Messaging DDS, DDS4CCM OMG

Pub/Sub Attachment

Transfer (PSAT)

DDS4CCM OMG

Logging log4cxx Apache Project

Config Parameter Access libConfig SourceForge .net

Data Record/Playback RTSP (Real Time Streaming Protocol) IETF RFC 2326

Discovery Services DDS Topics, DDS4CCM OMG

Time Management POSIX & ACE Timers IEEE/ISO/IEC & DOC Group

Math Libraries VSIPL, VSIPL++ OMG

Application Instrumentation Application Instrumentation (AI) OMG

OS Abstraction ACE, POSIX DOC Group, IEEE/ISO/IEC

SNA Core Software Services (CSS) & APIs
Layered, Component Based Architecture (CBA)

• SNA CBDDS OT
architecture patterns
and service taxonomy
borrows from the
mainstream market
driven (MMD) IT
enterprise computing
world, where R&D
investment is far
larger

• IT patterns,
approaches and
reference models are
pushed down to the
OT embedded space
to the maximum
practical extent

7

Core Software Services
(CSS)

Time Management System Management

Security

Data/Record Playback Service

Data & Service Discovery Logging Service

Core Software API Libraries

OA API
Boundary

OS

Abstraction

System

Mgmt (SMS)
(App Container)

Time

Mgmt

Service/

Client

Messaging

Math

Libraries

Config

Parameter

Access

Discovery

Services

Data

Record /

Playback

Publish / Subscribe Messaging Backbone Request / Reply Messaging Backbone

Application

Instrumentation

(AI)

Pub/Sub

Attachment

Transfer (PSAT)

Pub/Sub

Messaging

Logging

Mainstream Market Driven (MMD) Hardware

Control
Middleware

Data
Middleware

OS & Drivers (POSIX/ACE)

Adapter
Access

Layered Architecture
 View 1

D
e
v
ic

e

A
d
a
p
te

r

R
e
ce

iv
e
r

A
d
a
p
te

r

S
e
n
d
e
r

A
d
a
p
te

r

D
e
v
ic

e

C
o
n
tr

o
lle

r

S
ig

n
a
l

P
ro

ce
ss

in
g

C
o
n
tr

o
l

P
ro

ce
ss

in
g

H
M

I

Open Standard APIs

OT Real-Time
Component
Application
Framework

Application

Components

View 2

• Distributed, real-time & embedded (DRE) OT application framework based
upon CBDDS is higher performance than IT enterprise component frameworks

– But with the same open, modular, quick development & time-to-market benefits

All SNA Middleware APIs Use Open Standards
Not Subverted Beneath a Proprietary Abstraction Layer

• The CSS APIs represent the “portability” MOSA key interface for middleware
– Underlying wire-protocol standards define the important middleware “interoperability” MOSA key

interface (e.g., RTPS for DDS, IIOP for CORBA)

• A CBDDS application framework provides the basic programming environment &
foundation for highly reusable application component designs

– Cover both General Purpose (GP) and Signal Processing (SP) applications

– Comprehensive application framework supports inversion of control and threading model encapsulation for
responsive, portable and highly scalable event-driven architecture (EDA) programming models

• Core services support mission independent needs of new programs

• OA APIs used directly by apps with no intermediate proprietary abstraction/shim layer
in between – true spirit/intent of MOSA for the portability key interface

8

Pub/Sub

Messaging

Data

Record /

Playback

System

Management
(App Container)

Service/Client

Messaging
Logging

Config

Parameter

Access

Time

Mgmt

Math

Libraries

Discovery

Services

Pub/Sub

Attachment

Transfer (PSAT)

OS

Abstraction

Mission Independent SNA Core Software Services and their Defining OA Standards

Application

Instrumentation

(AI)

Advantages of Open Standards Based APIs
Compared with Much Overused Custom Abstraction Layer APIs

• Compliant with MOSA guidelines and governance for new open and modular systems
– Per MOSA, open APIs are used directly, without a custom or proprietary adaptation or isolation layer overlaying

them to provide a theoretical future hedge against open technology obsolescence

• Proprietary/custom adaptation/isolation/abstraction/shim layers rarely meet this goal, since future
middleware products/standards are typically accompanied by API-breaking paradigm changes as well

• Open APIs are less prone to technology obsolescence than custom/proprietary APIs
– Both define interfaces independent of the underlying implementation

– Neither offers an advantage if the underlying implementation needs to be updated or replaced – the
chosen/defined API façade can be overlaid on any underlying implementation, whether custom or off-the-shelf

– Future technology replacements often provide off-the-shelf adapters and tools to make it easier to modernize
open API approaches (e.g., commercial CORBA to web service adapters)

• Immediate use of existing documentation including API interface specs, tutorials, use
examples, textbooks, training material, etc.

– API definitions available now, no custom document creation/maintenance required

• Open APIs are typically well vetted and thought out in terms of defining generic
interfaces for future extension and adaptability

– Custom APIs typically change quite often over the first few years of use, resulting in costly application layer
changes as the underlying APIs evolve

• Off-the-shelf technology reuse for more agile technology refresh
– Utilization of existing implementations of the chosen open standards interfaces

– Utilization of existing tools written to directly utilize the chosen open standards

– Ability to leverage commercial investment, insert cutting edge technology as it evolves, and reduce system
lifecycle costs for technology refresh

9 The OMG DDS4CCM standard IS an OA vendor-neutral middleware isolation layer!

Custom abstraction layers are

expensive to maintain, and

typically lock your applications

to old infrastructure

Design vs. Deployment
Component Based Architecture (CBA) Separation of Concerns

• CBA design and deployment
phases of development are
independent

• Components are designed to
have the following features:

– Location-independent

– Transparent to IPC or port
transports (local or remote)

– Have no knowledge of where
or how many instances will run

• Component deployment
planning takes place after
design

– Often by different personnel,
by a different company/team
or system integrator (SI)

– Includes setting per-instance
deployment properties

10

• A CBDDS deployment framework manages the lifecycle of the component server,
container and component instances at run-time

– Provided OMG D&C compatible deployment descriptor files at run-time

– Use CDD/CDP files to start up a new system across multiple nodes, shut it down, or make dynamic
changes to a running system

Conceptual Hierarchical View of D&C Deployment Launch with DAnCE

Component Based Software Lifecycle Process
Driven at Each Stage of Development by Standards-Based Artifacts

11

IDL CDP CDD

• Zeligsoft CX
• Artisan Studio • Eclipse

• Zeligsoft CX
• Artisan Studio

Design Tool IDE Tool
Deployment

Planning Tool

System Software
Design &

Component
Definition

Component
Interface

Design

Component
Packaging &

Assembly

Component
Deployment,
Integration &

Reuse

Component
Software Design

Component
Implementation

1 2 5 6 4 3

A
rc

h
it
e
ct

u
re

&

 S
y
st

e
m

D

e
si

g
n

S
y
st

e
m

In

te
g
ra

ti
o
n
,

Te
st

 &

V
e
ri
fi
ca

ti
o
n

SNA CBD Software Lifecycle Process

Key

Artifacts
CPP, H SO

• IDE: Integrated Development Environment

• CBD: Component Based Development

• SNA: Scalable Node Architecture

• IDL: Interface Definition Language (OMG)

• CDP: Component Deployment Plan

• CDD: Component Domain Descriptor

MDA Tool-Centric SNA CBD Software Lifecycle Process View

Agile process iterations early & often, incrementally building up from an early executable “skeleton” architecture

MDE Tools are Available to Support CBD for

CBDDS and Auto-Generation of Critical Artifacts

12

Zeligsoft CX for CBDDS (PrismTech)
UML-based CBDDS Design & Deployment Planning tool

Artisan Studio (Atego)
UML-based CBDDS Design &

Deployment Planning tool

• Teton has fostered the development of

two extensive UML-based MDE tool

suites to support the CBD process

• CBA architecture captured as a PIM

• Maps to a CBDDS PSM

• Key auto-generated OA artifacts drive

the overall process (IDL 3.5, D&C)

• Integration with Eclipse IDE in the SNA

SDK offers ability to build initial DRE1

“executable architecture” skeletons w/o

writing a single line of code

1DRE: Distributed, Real-Time & Embedded

Layered Middleware Framework
The Teton SNA Application Framework Run-Time SW Stack

13

Hardware

Layer

OS, Driver &

Network Stack

Layer

Middleware Layer
• Typically

compressed to show

Application Layer

content instead, but

exposed here to

highlight CBDDS

technologies used in

the SNA Platform

• Many layers are just

protocols, templates

or virtual function

calls (light)

Application Layer

OS, Comms, Network Stack

OS Abstraction & Utilities Framework

Messaging Framework

Application Framework - Run-Time Application Framework - Deployment

KEY

Middleware

Framework

Sub-Layers

E
n
a
b
lin

g
 E

n
v
ir
o
n
m

e
n
t

M
o
d
u
la

r
D

e
si

g
n

K
e
y
 I
n
te

rf
a
ce

s

O
p
e
n
 S

ta
n
d
a
rd

s

C
e
rt

if
ie

d
 C

o
n
fo

rm
a
n
ce

MOSA

Five Pillars

Of

MOSA

Component Frameworks Enable Modularity

• Standards-based component frameworks put the “M” in “MOSA”

– MOSA = Modular Open Systems Approach, a U.S. DoD Open Architecture initiative

• Use of messaging middleware, layered architectures and/or standards-
based or custom adaptation/isolation layers certainly help, but provide
no guarantee of modularity

– The “modularity” architecture quality attribute is critical to realizing the business
goals of software reuse, lower cost and faster time to market touted by Open
Architecture (OA) initiatives

• Component standards like LwCCM and extensions (CBDDS), and the
anticipated future OMG UCM standard, both promote and in some
cases enforce modularity

– They are also vendor and programming language agnostic

– While CBDDS is partially messaging middleware
agnostic already, UCM is expected to be fully so
by requirement and design

DDS vs. CBDDS
Comparison Between a Messaging and an Application Framework

• DDS: Data Distribution Service (a middleware messaging framework)
– Popular, powerful OT pub-sub messaging DRE (distributed, real-time, embedded) middleware

– Offers:
• OA, EDA

• Interoperability, Performance
• Location-independent messaging and state distribution

• CBDDS: Component Based DDS (a middleware application framework)
– Enhanced DDS alternative that addresses the standards-based integration of DDS with other

OA common core services required by all software-intensive system designs

– Extends DDS to add:
• SOA, CBA, MDA (tooling enabled by structure, minimal value w/DDS-only)
• Reuse, Modularity

– Adds structure to your architecture, not just interoperable messaging

• Portability
– Standards-based OMG DDS4CCM abstraction layer for DDS (vendor neutrality,

transparent use of alternative middleware standards – not just DDS)
– Portable, “container” based execution environment (threading model encapsulation,

event queue/dispatch, clean integration of Logging, Time Management and Security)
• Additional core services – System Management, Service/Client Messaging, PSAT, others

15

Teton’s “String of

Pearls” Driving

Architecture

Quality Attributes

Offered by both DDS & CBDDS

Offered by CBDDS

KEY

Google “dds vs dds4ccm” for more details on comparison – OMG DDS Portal post from June 2011

MDA

SOA Extensible

Reusable

Plug and Play

Distributed

Net-Centric

EDA

Dynamic Performant

Scalable

Interoperable Secure

Component
Based (CBA)

Portable MOSA/OA
Modular

Location
Independent

CBDDS Technology
Teton Project Results and Efforts To Date

• Use of our CBDDS-based SNA Platform continues to grow at Northrop Grumman

– Used so far on 14 programs, up to 20 IRAD efforts, with plans and proposals for many more

• Emerging themes common to all SNA-based programs using CBDDS include…

– Significant productivity gains during design and greatly reduced I&T efforts

– Component and assembly reuse, including use of a new internal Software Reuse Library

– Complexity & SLOC reductions (56% reduction on one effort refactored to run on CBDDS)

– Very high stability in executing systems, some of which are fairly complex (100’s of components)

– Shortened development times (= lower development costs)

– Excellent and extremely quick portability between disparate target hardware architectures

• We hope to continue to help advance CBDDS technology in the open marketplace

– Over 50 subcontracts issued by Teton since late 2008 (both customer & NGC funded)

– Open source and commercial product sponsorships have advanced implementations of open
standards supporting LwCCM, DDS4CCM, AMI4CCM, D&C, IDL and new C++ language
mappings, and VSIPL++

• For both middleware and MDA tooling for CBDDS

• Notable OA software sponsorships have included Remedy IT, RTI, Vanderbilt ISIS,
Zeligsoft/PrismTech, Atego, OCI and Mentor Graphics

– Sponsored OA implementation improvements are publicly available

– Have also helped to sponsor the advancement of CBDDS-relevant open standards at OMG

16

Looking Forward to UCM

• Our road forward includes the following key milestones

– Advanced CBDDS implementation using the new IDL2C++11 language mappings

• Smaller footprint, better performance, much easier to use APIs free of the CORBA

namespace

• Future “X11” version of open source ACE+TAO+CIAO+DAnCE from the DOC

Group, as funding/sponsorship allows

– Unified Component Model (UCM)

• Even smaller & lighter footprint

• CORBA dependency fully removed (to optional connectors)

• Full vendor, programming language & middleware agnostic solution

• GIS client-server/request-reply connectors encapsulating DDS, CORBA, …

• All-DDS connector option for even smaller CBDDS footprint & flexibility

• Growing library of connector types of all flavors (DDS, CORBA, PSAT, future…)

• Competing products and Java support

– Ongoing CBDDS MDA tool improvements to increase ease of use and user productivity

17

Backup Slides

Abstract

A Component Based DDS (CBDDS) application framework encompasses an integrated suite of seven OMG open

standard technologies, including CCM, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C (DEPL). At Northrop

Grumman Electronic Systems (NGES), our multi-year Teton Project open architecture initiative has adopted CBDDS as

the foundation for building distributed, real-time, embedded (DRE) applications targeting large, complex systems. To

date we have used our CBDDS-based Scalable Node Architecture (SNA) Platform on 14 different programs and almost

twenty internal R&D efforts, and plan to leverage it on many more in the future. We look forward to continued

advancement of the CBDDS technology suite, including MDA tooling enhancements, spec improvements to the

dynamic capabilities of D&C, as well as the anticipated advantages of an OMG Unified Component Model (UCM) as a

lighter-weight, higher performance alternative of the CCM component framework that we use today.

This presentation will offer a brief introduction to the NGES Teton Project, covering the five Component Based

Architecture (CBA), Open Architecture (OA), Model Driven Architecture (MDA), Event Driven Architecture (EDA) and

Service Oriented Architecture (SOA) architectural tenets that have driven the selection of CBDDS as our core

application framework foundation. We will discuss our activities relative to CBDDS technology advancement in terms of

open source and commercial development of both DRE middleware and MDA tooling for CBDDS, and how we’ve been

using this technology over the past 3 years on real-world applications with excellent results. The advantages offered by

a CBDDS application framework will be presented, as compared for instance to a less comprehensive CORBA or DDS-

only messaging framework, covering the additional key architecture quality attributes addressed by CBDDS. These

notably include greatly improved and enforceable modularity, improved portability, reduced complexity due to the higher

CBDDS abstraction level for application development, MDA tooling options and productivity enhancements leveraging

component-based design methodologies, development time reduction and faster time-to-market for DRE applications,

reduced development costs, and component level software reuse.

